import langchain
from langchain.embeddings import SentenceTransformerEmbeddings
from langchain.chains.question_answering import load_qa_chain
from langchain.document_loaders import UnstructuredPDFLoader,UnstructuredWordDocumentLoader
from langchain.indexes import VectorstoreIndexCreator
from langchain.vectorstores import FAISS
from langchain import HuggingFaceHub
from langchain import PromptTemplate
from langchain.chat_models import ChatOpenAI
from zipfile import ZipFile
import gradio as gr
import openpyxl
import os
import shutil
from langchain.schema import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
import tiktoken
import secrets
import openai
import time
from duckduckgo_search import DDGS
import requests
import tempfile
import pandas as pd
import numpy as np
from openai import OpenAI

from mistralai.client import MistralClient
from mistralai.models.chat_completion import ChatMessage

from groq import Groq


MODEL_LIST = [
    "mistral-tiny",
    "mistral-small",
    "mistral-medium",
]
DEFAULT_MODEL = "mistral-small"
DEFAULT_TEMPERATURE = 0.7


tokenizer = tiktoken.encoding_for_model("gpt-3.5-turbo")

# create the length function
def tiktoken_len(text):
    tokens = tokenizer.encode(
        text,
        disallowed_special=()
    )
    return len(tokens)

text_splitter = RecursiveCharacterTextSplitter(
    chunk_size=512,
    chunk_overlap=200,
    length_function=tiktoken_len,
    separators=["\n\n", "\n", " ", ""]
)

embeddings = SentenceTransformerEmbeddings(model_name="thenlper/gte-base")
foo = Document(page_content='foo is fou!',metadata={"source":'foo source'})

def reset_database(ui_session_id):
  session_id = f"PDFAISS-{ui_session_id}"
  if 'drive' in session_id:
    print("RESET DATABASE: session_id contains 'drive' !!")
    return None

  try:
    shutil.rmtree(session_id)
  except:
    print(f'no {session_id} directory present')
  
  try:
    os.remove(f"{session_id}.zip")
  except:
    print("no {session_id}.zip present")

  return None

def is_duplicate(split_docs,db):
  epsilon=0.0
  print(f"DUPLICATE: Treating: {split_docs[0].metadata['source'].split('/')[-1]}")
  for i in range(min(3,len(split_docs))):
    query = split_docs[i].page_content
    docs = db.similarity_search_with_score(query,k=1)
    _ , score = docs[0]
    epsilon += score
  print(f"DUPLICATE: epsilon: {epsilon}")
  return epsilon < 0.1

def merge_split_docs_to_db(split_docs,db,progress,progress_step=0.1):
  progress(progress_step,desc="merging docs")
  if len(split_docs)==0:
    print("MERGE to db: NO docs!!")
    return

  filename = split_docs[0].metadata['source']
  # if is_duplicate(split_docs,db): #todo handle duplicate management
  #   print(f"MERGE: Document is duplicated: {filename}")
  #   return
  # print(f"MERGE: number of split docs: {len(split_docs)}")
  batch = 10
  db1 = None
  for i in range(0, len(split_docs), batch):
    progress(i/len(split_docs),desc=f"added {i} chunks of {len(split_docs)} chunks")
    if db1:
        db1.add_documents(split_docs[i:i+batch])
    else:
        db1 = FAISS.from_documents(split_docs[i:i+batch], embeddings)
        
    db1.save_local(split_docs[-1].metadata["source"].split(".")[-1]) #create an index with the same name as the file
    #db.merge_from(db1) #we do not merge anymore, instead, we create a new index for each file
  return db1

def merge_pdf_to_db(filename,session_folder,progress,progress_step=0.1):
  progress_step+=0.05
  progress(progress_step,'unpacking pdf')
  doc = UnstructuredPDFLoader(filename).load()
  doc[0].metadata['source'] = filename.split('/')[-1]
  split_docs = text_splitter.split_documents(doc)
  progress_step+=0.3
  progress(progress_step,'pdf unpacked')
  return merge_split_docs_to_db(split_docs,session_folder,progress,progress_step)

def merge_docx_to_db(filename,session_folder,progress,progress_step=0.1):
  progress_step+=0.05
  progress(progress_step,'unpacking docx')
  doc = UnstructuredWordDocumentLoader(filename).load()
  doc[0].metadata['source'] = filename.split('/')[-1]
  split_docs = text_splitter.split_documents(doc)
  progress_step+=0.3
  progress(progress_step,'docx unpacked')
  return merge_split_docs_to_db(split_docs,session_folder,progress,progress_step)

def merge_txt_to_db(filename,session_folder,progress,progress_step=0.1):
  progress_step+=0.05
  progress(progress_step,'unpacking txt')
  with open(filename) as f:
      docs = text_splitter.split_text(f.read())
      split_docs = [Document(page_content=doc,metadata={'source':filename.split('/')[-1]}) for doc in docs]
  progress_step+=0.3
  progress(progress_step,'txt unpacked')
  return merge_split_docs_to_db(split_docs,session_folder,progress,progress_step)

def unpack_zip_file(filename,db,progress):
    with ZipFile(filename, 'r') as zipObj:
        contents = zipObj.namelist()
        print(f"unpack zip: contents: {contents}")
        tmp_directory = filename.split('/')[-1].split('.')[-2]
        shutil.unpack_archive(filename, tmp_directory)

        if 'index.faiss' in [item.lower() for item in contents]:
            db2 = FAISS.load_local(tmp_directory, embeddings)
            db.merge_from(db2)
            return db
        
        for file in contents:
            if file.lower().endswith('.docx'):
              db = merge_docx_to_db(f"{tmp_directory}/{file}",db,progress)
            if file.lower().endswith('.pdf'):
              db = merge_pdf_to_db(f"{tmp_directory}/{file}",db,progress)
            if file.lower().endswith('.txt'):
              db = merge_txt_to_db(f"{tmp_directory}/{file}",db,progress)
        return db

def unzip_db(filename, ui_session_id):
    with ZipFile(filename, 'r') as zipObj:
            contents = zipObj.namelist()
            print(f"unzip: contents: {contents}")
            tmp_directory = f"PDFAISS-{ui_session_id}"
            shutil.unpack_archive(filename, tmp_directory)

def add_files_to_zip(session_id):
    zip_file_name = f"{session_id}.zip"
    with ZipFile(zip_file_name, "w") as zipObj:
        for root, dirs, files in os.walk(session_id):
            for file_name in files:
                file_path = os.path.join(root, file_name)
                arcname = os.path.relpath(file_path, session_id)
                zipObj.write(file_path, arcname)

## Search files functions ##

def search_docs(topic, max_references):
  print(f"SEARCH PDF : {topic}")
  doc_list = []
  with DDGS() as ddgs:
    i=0
    for r in ddgs.text('{} filetype:pdf'.format(topic), region='wt-wt', safesearch='On', timelimit='n'):
      #doc_list.append(str(r))
      if i>=max_references:
        break
      doc_list.append("TITLE : " + r['title'] + " -- BODY : " + r['body'] + " -- URL : " + r['href'])
      i+=1
  return gr.update(choices=doc_list)


def store_files(references, ret_names=False):
    url_list=[]
    temp_files = []
    for ref in references:
        url_list.append(ref.split(" ")[-1])
    for url in url_list:
        response = requests.get(url)
        if response.status_code == 200:
            filename = url.split('/')[-1]
            if filename.split('.')[-1] == 'pdf':
                filename = filename[:-4]
                print('File name.pdf :', filename)
                temp_file = tempfile.NamedTemporaryFile(delete=False,prefix=filename, suffix='.pdf')
            else:
                print('File name :', filename)
                temp_file = tempfile.NamedTemporaryFile(delete=False,prefix=filename, suffix='.pdf')
            temp_file.write(response.content)
            temp_file.close()
            if ret_names:
                temp_files.append(temp_file.name)
            else:
                temp_files.append(temp_file)
    
    return temp_files
    
## Summary functions ##

## Load each doc from the vector store
def load_docs(ui_session_id):
    session_id_global_db = f"PDFAISS-{ui_session_id}"
    try:
        db = FAISS.load_local(session_id_global_db,embeddings)
        print("load_docs after loading global db:",session_id_global_db,len(db.index_to_docstore_id))
    except:
        return f"SESSION: {session_id_global_db} database does not exist","",""
    docs = []
    for i in range(1,len(db.index_to_docstore_id)):
        docs.append(db.docstore.search(db.index_to_docstore_id[i]))
    return docs

                
# summarize with gpt 3.5 turbo
def summarize_gpt(doc,system='provide a summary of the following document: ', first_tokens=600):
    doc = doc.replace('\n\n\n', '').replace('---', '').replace('...', '').replace('___', '')
    encoded = tokenizer.encode(doc)
    print("/n TOKENIZED : ", encoded)
    decoded = tokenizer.decode(encoded[:min(first_tokens, len(encoded))])
    print("/n DOC SHORTEN", min(first_tokens, len(encoded)), " : ", decoded)
    completion = openai.ChatCompletion.create(
    model="gpt-3.5-turbo",
    messages=[
        {"role": "system", "content": system},
        {"role": "user", "content": decoded}
        ]
    )
    return completion.choices[0].message["content"]


def summarize_docs_generator(apikey_input, session_id):
    openai.api_key = apikey_input
    docs=load_docs(session_id)
    print("################# DOCS LOADED ##################", "docs type : ", type(docs[0]))
    
    try:
        fail = docs[0].page_content
    except:
        return docs[0]

    source = ""
    summaries = ""
    i = 0
    while i<len(docs):
        doc = docs[i]
        unique_doc = ""
        if source != doc.metadata:
            unique_doc = ''.join([doc.page_content for doc in docs[i:i+3]])
            print("\n\n****Open AI API called****\n\n")
            if i == 0:
                try:
                    summary = summarize_gpt(unique_doc)
                except:
                    return f"ERROR : Try checking the validity of the provided OpenAI API Key"
            else:
                try:
                    summary = summarize_gpt(unique_doc)
                except:
                    print(f"ERROR : There was an error but it is not linked with the validity of api key, taking a 20s nap")
                    yield summaries + f"\n\n °°° OpenAI error, please wait 20 sec of cooldown. °°°"
                    time.sleep(20)
                    summary = summarize_gpt(unique_doc)

            print("SUMMARY : ", summary)
            summaries += f"Source : {doc.metadata['source'].split('/')[-1]}\n{summary} \n\n"
            source = doc.metadata
            yield summaries
        i+=1
    yield summaries


def summarize_docs(apikey_input, session_id):
    gen = summarize_docs_generator(apikey_input, session_id)
    while True:
        try:
            yield str(next(gen))
        except StopIteration:
            return

#### UI Functions ####

def update_df(ui_session_id):
    df = pd.DataFrame(columns=["File name", "Question 1"])
    session_folder = f"PDFAISS-{ui_session_id}"
    file_names = os.listdir(session_folder)
    for i, file_name in enumerate(file_names):
        new_row = {'File name': str(file_name), 'Question': " ", 'Generated answer': " ", 'Sources': " "}
        df.loc[i] = new_row
    return df

def embed_files(files,ui_session_id,progress=gr.Progress(),progress_step=0.05):
    print(files)
    progress(progress_step,desc="Starting...")
    split_docs=[]
    if len(ui_session_id)==0:
        ui_session_id = secrets.token_urlsafe(16)
    session_folder = f"PDFAISS-{ui_session_id}"

    if os.path.exists(session_folder) and os.path.isdir(session_folder):
        databases = os.listdir(session_folder)
        # db = FAISS.load_local(databases[0],embeddings)
    else:
        try:
            os.makedirs(session_folder)
            print(f"The folder '{session_folder}' has been created.")
        except OSError as e:
            print(f"Failed to create the folder '{session_folder}': {e}")
        # db =  FAISS.from_documents([foo], embeddings)
        # db.save_local(session_id)
        # print(f"SESSION: {session_id} database created")
    
    #print("EMBEDDED, before embeddeding: ",session_id,len(db.index_to_docstore_id))
    for file_id,file in enumerate(files):
        print("ID : ", file_id, "FILE : ", file)
        file_type = file.name.split('.')[-1].lower()
        source = file.name.split('/')[-1]
        print(f"current file: {source}")
        progress(file_id/len(files),desc=f"Treating {source}")

        if file_type == 'zip':
            unzip_db(file.name, ui_session_id)
            add_files_to_zip(session_folder)
            return f"{session_folder}.zip", ui_session_id, update_df(ui_session_id)

        if file_type == 'pdf':
            db2 = merge_pdf_to_db(file.name,session_folder,progress)
        
        if file_type == 'txt':
            db2 = merge_txt_to_db(file.name,session_folder,progress)
        
        if file_type == 'docx':
            db2 = merge_docx_to_db(file.name,session_folder,progress)

        if db2 != None:
            # db = db2
            # db.save_local(session_id)
            db2.save_local(f"{session_folder}/{source}")
            ### move file to store ###
            progress(progress_step, desc = 'moving file to store')
            directory_path = f"{session_folder}/{source}/store/"
            if not os.path.exists(directory_path):
                os.makedirs(directory_path)
            try:
                shutil.move(file.name, directory_path)
            except:
                pass

    ### load the updated db and zip it ###
    progress(progress_step, desc = 'loading db')
    # db = FAISS.load_local(session_id,embeddings)
    # print("EMBEDDED, after embeddeding: ",session_id,len(db.index_to_docstore_id))
    progress(progress_step, desc = 'zipping db for download')
    add_files_to_zip(session_folder)
    print(f"EMBEDDED: db zipped")
    progress(progress_step, desc = 'db zipped')
    
    
    return f"{session_folder}.zip",ui_session_id, update_df(ui_session_id)



def add_to_db(references,ui_session_id):
    files = store_files(references)
    return embed_files(files,ui_session_id)

def export_files(references):
    files = store_files(references, ret_names=True)
    #paths = [file.name for file in files]
    return files
    

def display_docs(docs):
  output_str = ''
  for i, doc in enumerate(docs):
      source = doc.metadata['source'].split('/')[-1]
      output_str += f"Ref: {i+1}\n{repr(doc.page_content)}\nSource: {source}\n\n"
  return output_str

def ask_gpt(query, apikey,history,ui_session_id):
    session_id = f"PDFAISS-{ui_session_id}"
    try:
      db = FAISS.load_local(session_id,embeddings)
      print("ASKGPT after loading",session_id,len(db.index_to_docstore_id))
    except:
      print(f"SESSION: {session_id} database does not exist")
      return f"SESSION: {session_id} database does not exist","",""

    docs = db.similarity_search(query)
    history += f"[query]\n{query}\n[answer]\n"
    if(apikey==""):
        history += f"None\n[references]\n{display_docs(docs)}\n\n"
        return "No answer from GPT", display_docs(docs),history
    else:
        llm = ChatOpenAI(temperature=0, model_name = 'gpt-3.5-turbo', openai_api_key=apikey)
        chain = load_qa_chain(llm, chain_type="stuff")
        answer = chain.run(input_documents=docs, question=query, verbose=True)
        history += f"{answer}\n[references]\n{display_docs(docs)}\n\n"
        return answer,display_docs(docs),history


# tmp functions to move somewhere else


#new api query format
def gpt_answer(api_key, query, model="gpt-3.5-turbo-1106", system_prompt="Use the provided References to answer the user Question. If the provided document do not contain the elements to answer the user question, just say 'No information.'."):
    if 'gpt' in model:
        client = OpenAI( api_key=api_key)
    
        chat_completion = client.chat.completions.create(
            messages=[
                {"role": "system", "content": system_prompt},
                {"role": "user", "content": query},
        
            ],
            model=model,
        )
        return chat_completion.choices[0].message.content
        
    if 'mistral' in model:
        client = MistralClient(api_key=api_key)
        chat_response = client.chat(
            model=model,
            messages=[
                ChatMessage(role="system", content=system_prompt),
                ChatMessage(role="user", content=query)],
        )
        return chat_response.choices[0].message.content
    if 'groq' in model:
        client = Groq(api_key=api_key)    
        chat_completion = client.chat.completions.create(
            messages=[
                {"role": "system", "content": system_prompt},
                {"role": "user", "content": query},
        
            ],
            model=model,
        )
        return chat_completion.choices[0].message.content

def add_line_breaks(input_string, line_length=100):
    lines = []
    to_break=input_string.split("\n---\n[Sources]")[0]
    for i in range(0, len(to_break), line_length):
        line = to_break[i:i+line_length]
        lines.append(line)
    return '\n'.join(lines)+input_string[len(to_break)-1:]



def upload_text_file(content):
    data = {"content": content, "syntax": "text", "expiry_days": 1}
    headers = {"User-Agent": "Sources"}
    r = requests.post("https://dpaste.com/api/", data=data, headers=headers)
    return f"{str(r.text)[:-1]}.txt"


def ask_df(df, api_key, model, ui_session_id):
    answers = []
    session_folder = f"PDFAISS-{ui_session_id}"
    question_column = df.columns[-1]
    if len(df.at[0, question_column])<2: #df.columns[-1] ==> last column label, last question
        return df
    for index, row in df.iterrows():
        question = row.iloc[-1]
        print(f"Question: {question}")
        if len(question)<2:
            question = df.at[0, question_column].split("\n---\n")[0]
        db_folder = "/".join([session_folder, row["File name"]])
        db = FAISS.load_local(db_folder,embeddings)
        print(f"\n\nQUESTION:\n{question}\n\n")
        docs = db.similarity_search(question)
        references = '\n******************************\n'.join([d.page_content for d in docs])
        print(f"REFERENCES: {references}")
        try:
            source = upload_text_file(references)
        except:
            source = "ERROR WHILE GETTING THE SOURCES FILE"
        query = f"## USER QUESTION:\n{question}\n\n## REFERENCES:\n{references}\n\nANSWER:\n\n"
        try:
            answer = gpt_answer(api_key, query, model)
        except Exception as e:
            answer = "ERROR WHILE ANSWERING THE QUESTION"
            print("ERROR: ", e)
        complete_answer = add_line_breaks("\n---\n".join(["## " + question, answer, "[Sources](" + source + ")"]))
        answers.append(complete_answer)
        print(complete_answer)
    df[question_column] = answers
    return df

def export_df(df, ftype):
    fname=secrets.token_urlsafe(16)
    if ftype=="xlsx":
        df.to_excel(f"{fname}.xlsx", index=False)
        return f"{fname}.xlsx"
    if ftype=="pkl":
        df.to_pickle(f"{fname}.pkl", index=False)
        return f"{fname}.pkl"
    if ftype=="csv":
        df.to_csv(f"{fname}.csv", index=False)
        return f"{fname}.csv"


with gr.Blocks() as demo:
    gr.Markdown("Upload your documents and question them.")
    with gr.Accordion("Open to enter your API key", open=False):
        apikey_input = gr.Textbox(placeholder="Type here your OpenAI API key to use Summarization and Q&A", label="OpenAI API Key",type='password')
        dd_model = gr.Dropdown(["groq:llama-3.3-70b-specdec", "groq:llama-3.3-70b-versatile", "groq:mixtral-8x7b-32768", "groq:llama-3.1-70b-versatile", "groq:llama-3.2-90b-text-preview", "mistral-tiny", "mistral-small", "mistral-medium","gpt-3.5-turbo-1106", "gpt-3.5-turbo", "gpt-3.5-turbo-16k", "gpt-4-1106-preview", "gpt-4", "gpt-4-32k"], value="gpt-3.5-turbo-1106", label='List of models', allow_custom_value=True, scale=1)        

    with gr.Tab("Upload PDF & TXT"): 
        with gr.Accordion("Get files from the web", open=False):
            with gr.Column():
                topic_input = gr.Textbox(placeholder="Type your research", label="Research")
                with gr.Row():
                    max_files = gr.Slider(1, 30, step=1, value=10, label="Maximum number of files")
                    btn_search = gr.Button("Search")
                dd_documents = gr.Dropdown(label='List of documents', info='Click to remove from selection', multiselect=True)
                with gr.Row():
                    btn_dl = gr.Button("Add these files to the Database")
                    btn_export = gr.Button("⬇ Export selected files ⬇")
                
        tb_session_id = gr.Textbox(label='session id')
        docs_input = gr.File(file_count="multiple", file_types=[".txt", ".pdf",".zip",".docx"])
        db_output = gr.File(label="Download zipped database")
        btn_generate_db = gr.Button("Generate database")
        btn_reset_db = gr.Button("Reset database")
        df_qna = gr.Dataframe(interactive=True, datatype="markdown")
        with gr.Row():
            btn_clear_df = gr.Button("Clear df")
            btn_fill_answers = gr.Button("Fill table with generated answers")
        with gr.Accordion("Export dataframe", open=False):
            with gr.Row():
              btn_export_df = gr.Button("Export df as", scale=1)
              r_format = gr.Radio(["xlsx", "pkl", "csv"], label="File type", value="xlsx", scale=2)
              file_df = gr.File(scale=1)



        btn_clear_df.click(update_df, inputs=[tb_session_id], outputs=df_qna)
        btn_fill_answers.click(ask_df, inputs=[df_qna, apikey_input, dd_model, tb_session_id], outputs=df_qna)
        btn_export_df.click(export_df, inputs=[df_qna, r_format], outputs=[file_df])
    with gr.Tab("Summarize PDF"):
        with gr.Column():
            summary_output = gr.Textbox(label='Summarized files')
            btn_summary = gr.Button("Summarize")

    
    with gr.Tab("Ask PDF"):
        with gr.Column():
            query_input = gr.Textbox(placeholder="Type your question", label="Question")
            btn_askGPT = gr.Button("Answer")
            answer_output = gr.Textbox(label='GPT 3.5 answer')
            sources = gr.Textbox(label='Sources')
            history = gr.Textbox(label='History')

    
    topic_input.submit(search_docs, inputs=[topic_input, max_files], outputs=dd_documents)
    btn_search.click(search_docs, inputs=[topic_input, max_files], outputs=dd_documents)
    btn_dl.click(add_to_db, inputs=[dd_documents,tb_session_id], outputs=[db_output,tb_session_id])
    btn_export.click(export_files, inputs=dd_documents, outputs=docs_input)
    btn_generate_db.click(embed_files, inputs=[docs_input,tb_session_id], outputs=[db_output,tb_session_id, df_qna])
    btn_reset_db.click(reset_database,inputs=[tb_session_id],outputs=[db_output])
    btn_summary.click(summarize_docs, inputs=[apikey_input,tb_session_id], outputs=summary_output)
    btn_askGPT.click(ask_gpt, inputs=[query_input,apikey_input,history,tb_session_id], outputs=[answer_output,sources,history])


#demo.queue(concurrency_count=10)
demo.launch(debug=False,share=False)