Spaces:
Runtime error
Runtime error
File size: 23,153 Bytes
3219c03 6e4356a fec7c0c 6e4356a 3219c03 6e4356a 3219c03 cc67e26 3219c03 6e4356a f219c08 6e4356a f219c08 fec7c0c ca55303 fec7c0c 6e4356a 4897612 a525c7d 4e2fbfe 4897612 4e2fbfe 2146cee 4e2fbfe a525c7d 3219c03 fb218a5 3219c03 7b37006 3219c03 4e2fbfe 3219c03 a525c7d 3219c03 394c1b2 3219c03 fec7c0c 3219c03 178afae 394c1b2 3219c03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 |
import langchain
from langchain.embeddings import SentenceTransformerEmbeddings
from langchain.chains.question_answering import load_qa_chain
from langchain.document_loaders import UnstructuredPDFLoader,UnstructuredWordDocumentLoader
from langchain.indexes import VectorstoreIndexCreator
from langchain.vectorstores import FAISS
from langchain import HuggingFaceHub
from langchain import PromptTemplate
from langchain.chat_models import ChatOpenAI
from zipfile import ZipFile
import gradio as gr
import openpyxl
import os
import shutil
from langchain.schema import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
import tiktoken
import secrets
import openai
import time
from duckduckgo_search import DDGS
import requests
import tempfile
import pandas as pd
import numpy as np
from openai import OpenAI
from mistralai.client import MistralClient
from mistralai.models.chat_completion import ChatMessage
from groq import Groq
MODEL_LIST = [
"mistral-tiny",
"mistral-small",
"mistral-medium",
]
DEFAULT_MODEL = "mistral-small"
DEFAULT_TEMPERATURE = 0.7
tokenizer = tiktoken.encoding_for_model("gpt-3.5-turbo")
# create the length function
def tiktoken_len(text):
tokens = tokenizer.encode(
text,
disallowed_special=()
)
return len(tokens)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=512,
chunk_overlap=200,
length_function=tiktoken_len,
separators=["\n\n", "\n", " ", ""]
)
embeddings = SentenceTransformerEmbeddings(model_name="thenlper/gte-base")
foo = Document(page_content='foo is fou!',metadata={"source":'foo source'})
def reset_database(ui_session_id):
session_id = f"PDFAISS-{ui_session_id}"
if 'drive' in session_id:
print("RESET DATABASE: session_id contains 'drive' !!")
return None
try:
shutil.rmtree(session_id)
except:
print(f'no {session_id} directory present')
try:
os.remove(f"{session_id}.zip")
except:
print("no {session_id}.zip present")
return None
def is_duplicate(split_docs,db):
epsilon=0.0
print(f"DUPLICATE: Treating: {split_docs[0].metadata['source'].split('/')[-1]}")
for i in range(min(3,len(split_docs))):
query = split_docs[i].page_content
docs = db.similarity_search_with_score(query,k=1)
_ , score = docs[0]
epsilon += score
print(f"DUPLICATE: epsilon: {epsilon}")
return epsilon < 0.1
def merge_split_docs_to_db(split_docs,db,progress,progress_step=0.1):
progress(progress_step,desc="merging docs")
if len(split_docs)==0:
print("MERGE to db: NO docs!!")
return
filename = split_docs[0].metadata['source']
# if is_duplicate(split_docs,db): #todo handle duplicate management
# print(f"MERGE: Document is duplicated: {filename}")
# return
# print(f"MERGE: number of split docs: {len(split_docs)}")
batch = 10
db1 = None
for i in range(0, len(split_docs), batch):
progress(i/len(split_docs),desc=f"added {i} chunks of {len(split_docs)} chunks")
if db1:
db1.add_documents(split_docs[i:i+batch])
else:
db1 = FAISS.from_documents(split_docs[i:i+batch], embeddings)
db1.save_local(split_docs[-1].metadata["source"].split(".")[-1]) #create an index with the same name as the file
#db.merge_from(db1) #we do not merge anymore, instead, we create a new index for each file
return db1
def merge_pdf_to_db(filename,session_folder,progress,progress_step=0.1):
progress_step+=0.05
progress(progress_step,'unpacking pdf')
doc = UnstructuredPDFLoader(filename).load()
doc[0].metadata['source'] = filename.split('/')[-1]
split_docs = text_splitter.split_documents(doc)
progress_step+=0.3
progress(progress_step,'pdf unpacked')
return merge_split_docs_to_db(split_docs,session_folder,progress,progress_step)
def merge_docx_to_db(filename,session_folder,progress,progress_step=0.1):
progress_step+=0.05
progress(progress_step,'unpacking docx')
doc = UnstructuredWordDocumentLoader(filename).load()
doc[0].metadata['source'] = filename.split('/')[-1]
split_docs = text_splitter.split_documents(doc)
progress_step+=0.3
progress(progress_step,'docx unpacked')
return merge_split_docs_to_db(split_docs,session_folder,progress,progress_step)
def merge_txt_to_db(filename,session_folder,progress,progress_step=0.1):
progress_step+=0.05
progress(progress_step,'unpacking txt')
with open(filename) as f:
docs = text_splitter.split_text(f.read())
split_docs = [Document(page_content=doc,metadata={'source':filename.split('/')[-1]}) for doc in docs]
progress_step+=0.3
progress(progress_step,'txt unpacked')
return merge_split_docs_to_db(split_docs,session_folder,progress,progress_step)
def unpack_zip_file(filename,db,progress):
with ZipFile(filename, 'r') as zipObj:
contents = zipObj.namelist()
print(f"unpack zip: contents: {contents}")
tmp_directory = filename.split('/')[-1].split('.')[-2]
shutil.unpack_archive(filename, tmp_directory)
if 'index.faiss' in [item.lower() for item in contents]:
db2 = FAISS.load_local(tmp_directory, embeddings)
db.merge_from(db2)
return db
for file in contents:
if file.lower().endswith('.docx'):
db = merge_docx_to_db(f"{tmp_directory}/{file}",db,progress)
if file.lower().endswith('.pdf'):
db = merge_pdf_to_db(f"{tmp_directory}/{file}",db,progress)
if file.lower().endswith('.txt'):
db = merge_txt_to_db(f"{tmp_directory}/{file}",db,progress)
return db
def unzip_db(filename, ui_session_id):
with ZipFile(filename, 'r') as zipObj:
contents = zipObj.namelist()
print(f"unzip: contents: {contents}")
tmp_directory = f"PDFAISS-{ui_session_id}"
shutil.unpack_archive(filename, tmp_directory)
def add_files_to_zip(session_id):
zip_file_name = f"{session_id}.zip"
with ZipFile(zip_file_name, "w") as zipObj:
for root, dirs, files in os.walk(session_id):
for file_name in files:
file_path = os.path.join(root, file_name)
arcname = os.path.relpath(file_path, session_id)
zipObj.write(file_path, arcname)
## Search files functions ##
def search_docs(topic, max_references):
print(f"SEARCH PDF : {topic}")
doc_list = []
with DDGS() as ddgs:
i=0
for r in ddgs.text('{} filetype:pdf'.format(topic), region='wt-wt', safesearch='On', timelimit='n'):
#doc_list.append(str(r))
if i>=max_references:
break
doc_list.append("TITLE : " + r['title'] + " -- BODY : " + r['body'] + " -- URL : " + r['href'])
i+=1
return gr.update(choices=doc_list)
def store_files(references, ret_names=False):
url_list=[]
temp_files = []
for ref in references:
url_list.append(ref.split(" ")[-1])
for url in url_list:
response = requests.get(url)
if response.status_code == 200:
filename = url.split('/')[-1]
if filename.split('.')[-1] == 'pdf':
filename = filename[:-4]
print('File name.pdf :', filename)
temp_file = tempfile.NamedTemporaryFile(delete=False,prefix=filename, suffix='.pdf')
else:
print('File name :', filename)
temp_file = tempfile.NamedTemporaryFile(delete=False,prefix=filename, suffix='.pdf')
temp_file.write(response.content)
temp_file.close()
if ret_names:
temp_files.append(temp_file.name)
else:
temp_files.append(temp_file)
return temp_files
## Summary functions ##
## Load each doc from the vector store
def load_docs(ui_session_id):
session_id_global_db = f"PDFAISS-{ui_session_id}"
try:
db = FAISS.load_local(session_id_global_db,embeddings)
print("load_docs after loading global db:",session_id_global_db,len(db.index_to_docstore_id))
except:
return f"SESSION: {session_id_global_db} database does not exist","",""
docs = []
for i in range(1,len(db.index_to_docstore_id)):
docs.append(db.docstore.search(db.index_to_docstore_id[i]))
return docs
# summarize with gpt 3.5 turbo
def summarize_gpt(doc,system='provide a summary of the following document: ', first_tokens=600):
doc = doc.replace('\n\n\n', '').replace('---', '').replace('...', '').replace('___', '')
encoded = tokenizer.encode(doc)
print("/n TOKENIZED : ", encoded)
decoded = tokenizer.decode(encoded[:min(first_tokens, len(encoded))])
print("/n DOC SHORTEN", min(first_tokens, len(encoded)), " : ", decoded)
completion = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": system},
{"role": "user", "content": decoded}
]
)
return completion.choices[0].message["content"]
def summarize_docs_generator(apikey_input, session_id):
openai.api_key = apikey_input
docs=load_docs(session_id)
print("################# DOCS LOADED ##################", "docs type : ", type(docs[0]))
try:
fail = docs[0].page_content
except:
return docs[0]
source = ""
summaries = ""
i = 0
while i<len(docs):
doc = docs[i]
unique_doc = ""
if source != doc.metadata:
unique_doc = ''.join([doc.page_content for doc in docs[i:i+3]])
print("\n\n****Open AI API called****\n\n")
if i == 0:
try:
summary = summarize_gpt(unique_doc)
except:
return f"ERROR : Try checking the validity of the provided OpenAI API Key"
else:
try:
summary = summarize_gpt(unique_doc)
except:
print(f"ERROR : There was an error but it is not linked with the validity of api key, taking a 20s nap")
yield summaries + f"\n\n °°° OpenAI error, please wait 20 sec of cooldown. °°°"
time.sleep(20)
summary = summarize_gpt(unique_doc)
print("SUMMARY : ", summary)
summaries += f"Source : {doc.metadata['source'].split('/')[-1]}\n{summary} \n\n"
source = doc.metadata
yield summaries
i+=1
yield summaries
def summarize_docs(apikey_input, session_id):
gen = summarize_docs_generator(apikey_input, session_id)
while True:
try:
yield str(next(gen))
except StopIteration:
return
#### UI Functions ####
def update_df(ui_session_id):
df = pd.DataFrame(columns=["File name", "Question 1"])
session_folder = f"PDFAISS-{ui_session_id}"
file_names = os.listdir(session_folder)
for i, file_name in enumerate(file_names):
new_row = {'File name': str(file_name), 'Question': " ", 'Generated answer': " ", 'Sources': " "}
df.loc[i] = new_row
return df
def embed_files(files,ui_session_id,progress=gr.Progress(),progress_step=0.05):
print(files)
progress(progress_step,desc="Starting...")
split_docs=[]
if len(ui_session_id)==0:
ui_session_id = secrets.token_urlsafe(16)
session_folder = f"PDFAISS-{ui_session_id}"
if os.path.exists(session_folder) and os.path.isdir(session_folder):
databases = os.listdir(session_folder)
# db = FAISS.load_local(databases[0],embeddings)
else:
try:
os.makedirs(session_folder)
print(f"The folder '{session_folder}' has been created.")
except OSError as e:
print(f"Failed to create the folder '{session_folder}': {e}")
# db = FAISS.from_documents([foo], embeddings)
# db.save_local(session_id)
# print(f"SESSION: {session_id} database created")
#print("EMBEDDED, before embeddeding: ",session_id,len(db.index_to_docstore_id))
for file_id,file in enumerate(files):
print("ID : ", file_id, "FILE : ", file)
file_type = file.name.split('.')[-1].lower()
source = file.name.split('/')[-1]
print(f"current file: {source}")
progress(file_id/len(files),desc=f"Treating {source}")
if file_type == 'zip':
unzip_db(file.name, ui_session_id)
add_files_to_zip(session_folder)
return f"{session_folder}.zip", ui_session_id, update_df(ui_session_id)
if file_type == 'pdf':
db2 = merge_pdf_to_db(file.name,session_folder,progress)
if file_type == 'txt':
db2 = merge_txt_to_db(file.name,session_folder,progress)
if file_type == 'docx':
db2 = merge_docx_to_db(file.name,session_folder,progress)
if db2 != None:
# db = db2
# db.save_local(session_id)
db2.save_local(f"{session_folder}/{source}")
### move file to store ###
progress(progress_step, desc = 'moving file to store')
directory_path = f"{session_folder}/{source}/store/"
if not os.path.exists(directory_path):
os.makedirs(directory_path)
try:
shutil.move(file.name, directory_path)
except:
pass
### load the updated db and zip it ###
progress(progress_step, desc = 'loading db')
# db = FAISS.load_local(session_id,embeddings)
# print("EMBEDDED, after embeddeding: ",session_id,len(db.index_to_docstore_id))
progress(progress_step, desc = 'zipping db for download')
add_files_to_zip(session_folder)
print(f"EMBEDDED: db zipped")
progress(progress_step, desc = 'db zipped')
return f"{session_folder}.zip",ui_session_id, update_df(ui_session_id)
def add_to_db(references,ui_session_id):
files = store_files(references)
return embed_files(files,ui_session_id)
def export_files(references):
files = store_files(references, ret_names=True)
#paths = [file.name for file in files]
return files
def display_docs(docs):
output_str = ''
for i, doc in enumerate(docs):
source = doc.metadata['source'].split('/')[-1]
output_str += f"Ref: {i+1}\n{repr(doc.page_content)}\nSource: {source}\n\n"
return output_str
def ask_gpt(query, apikey,history,ui_session_id):
session_id = f"PDFAISS-{ui_session_id}"
try:
db = FAISS.load_local(session_id,embeddings)
print("ASKGPT after loading",session_id,len(db.index_to_docstore_id))
except:
print(f"SESSION: {session_id} database does not exist")
return f"SESSION: {session_id} database does not exist","",""
docs = db.similarity_search(query)
history += f"[query]\n{query}\n[answer]\n"
if(apikey==""):
history += f"None\n[references]\n{display_docs(docs)}\n\n"
return "No answer from GPT", display_docs(docs),history
else:
llm = ChatOpenAI(temperature=0, model_name = 'gpt-3.5-turbo', openai_api_key=apikey)
chain = load_qa_chain(llm, chain_type="stuff")
answer = chain.run(input_documents=docs, question=query, verbose=True)
history += f"{answer}\n[references]\n{display_docs(docs)}\n\n"
return answer,display_docs(docs),history
# tmp functions to move somewhere else
#new api query format
def gpt_answer(api_key, query, model="gpt-3.5-turbo-1106", system_prompt="Use the provided References to answer the user Question. If the provided document do not contain the elements to answer the user question, just say 'No information.'."):
if 'gpt' in model:
client = OpenAI( api_key=api_key)
chat_completion = client.chat.completions.create(
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": query},
],
model=model,
)
return chat_completion.choices[0].message.content
if 'mistral' in model:
client = MistralClient(api_key=api_key)
chat_response = client.chat(
model=model,
messages=[
ChatMessage(role="system", content=system_prompt),
ChatMessage(role="user", content=query)],
)
return chat_response.choices[0].message.content
if 'groq' in model:
client = Groq(api_key=api_key)
chat_completion = client.chat.completions.create(
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": query},
],
model=model.split("groq:")[1],
)
return chat_completion.choices[0].message.content
def add_line_breaks(input_string, line_length=100):
lines = []
to_break=input_string.split("\n---\n[Sources]")[0]
for i in range(0, len(to_break), line_length):
line = to_break[i:i+line_length]
lines.append(line)
return '\n'.join(lines)+input_string[len(to_break)-1:]
def upload_text_file(content):
data = {"content": content, "syntax": "text", "expiry_days": 1}
headers = {"User-Agent": "Sources"}
r = requests.post("https://dpaste.com/api/", data=data, headers=headers)
return f"{str(r.text)[:-1]}.txt"
def ask_df(df, api_key, model, ui_session_id):
answers = []
session_folder = f"PDFAISS-{ui_session_id}"
question_column = df.columns[-1]
if len(df.at[0, question_column])<2: #df.columns[-1] ==> last column label, last question
return df
for index, row in df.iterrows():
question = row.iloc[-1]
print(f"Question: {question}")
if len(question)<2:
question = df.at[0, question_column].split("\n---\n")[0]
db_folder = "/".join([session_folder, row["File name"]])
db = FAISS.load_local(db_folder,embeddings)
print(f"\n\nQUESTION:\n{question}\n\n")
docs = db.similarity_search(question)
references = '\n******************************\n'.join([d.page_content for d in docs])
print(f"REFERENCES: {references}")
try:
source = upload_text_file(references)
except:
source = "ERROR WHILE GETTING THE SOURCES FILE"
query = f"## USER QUESTION:\n{question}\n\n## REFERENCES:\n{references}\n\nANSWER:\n\n"
try:
answer = gpt_answer(api_key, query, model)
except Exception as e:
answer = "ERROR WHILE ANSWERING THE QUESTION"
print("ERROR: ", e)
complete_answer = add_line_breaks("\n---\n".join(["## " + question, answer, "[Sources](" + source + ")"]))
answers.append(complete_answer)
print(complete_answer)
df[question_column] = answers
return df
def export_df(df, ftype):
fname=secrets.token_urlsafe(16)
if ftype=="xlsx":
df.to_excel(f"{fname}.xlsx", index=False)
return f"{fname}.xlsx"
if ftype=="pkl":
df.to_pickle(f"{fname}.pkl", index=False)
return f"{fname}.pkl"
if ftype=="csv":
df.to_csv(f"{fname}.csv", index=False)
return f"{fname}.csv"
with gr.Blocks() as demo:
gr.Markdown("Upload your documents and question them.")
with gr.Accordion("Open to enter your API key", open=False):
apikey_input = gr.Textbox(placeholder="Type here your OpenAI API key to use Summarization and Q&A", label="OpenAI API Key",type='password')
dd_model = gr.Dropdown(["groq:llama-3.3-70b-specdec", "groq:llama-3.3-70b-versatile", "groq:mixtral-8x7b-32768", "groq:llama-3.1-70b-versatile", "groq:llama-3.2-90b-text-preview", "mistral-tiny", "mistral-small", "mistral-medium","gpt-3.5-turbo-1106", "gpt-3.5-turbo", "gpt-3.5-turbo-16k", "gpt-4-1106-preview", "gpt-4", "gpt-4-32k"], value="gpt-3.5-turbo-1106", label='List of models', allow_custom_value=True, scale=1)
with gr.Tab("Upload PDF & TXT"):
with gr.Accordion("Get files from the web", open=False):
with gr.Column():
topic_input = gr.Textbox(placeholder="Type your research", label="Research")
with gr.Row():
max_files = gr.Slider(1, 30, step=1, value=10, label="Maximum number of files")
btn_search = gr.Button("Search")
dd_documents = gr.Dropdown(label='List of documents', info='Click to remove from selection', multiselect=True)
with gr.Row():
btn_dl = gr.Button("Add these files to the Database")
btn_export = gr.Button("β¬ Export selected files β¬")
tb_session_id = gr.Textbox(label='session id')
docs_input = gr.File(file_count="multiple", file_types=[".txt", ".pdf",".zip",".docx"])
db_output = gr.File(label="Download zipped database")
btn_generate_db = gr.Button("Generate database")
btn_reset_db = gr.Button("Reset database")
df_qna = gr.Dataframe(interactive=True, datatype="markdown")
with gr.Row():
btn_clear_df = gr.Button("Clear df")
btn_fill_answers = gr.Button("Fill table with generated answers")
with gr.Accordion("Export dataframe", open=False):
with gr.Row():
btn_export_df = gr.Button("Export df as", scale=1)
r_format = gr.Radio(["xlsx", "pkl", "csv"], label="File type", value="xlsx", scale=2)
file_df = gr.File(scale=1)
btn_clear_df.click(update_df, inputs=[tb_session_id], outputs=df_qna)
btn_fill_answers.click(ask_df, inputs=[df_qna, apikey_input, dd_model, tb_session_id], outputs=df_qna)
btn_export_df.click(export_df, inputs=[df_qna, r_format], outputs=[file_df])
with gr.Tab("Summarize PDF"):
with gr.Column():
summary_output = gr.Textbox(label='Summarized files')
btn_summary = gr.Button("Summarize")
with gr.Tab("Ask PDF"):
with gr.Column():
query_input = gr.Textbox(placeholder="Type your question", label="Question")
btn_askGPT = gr.Button("Answer")
answer_output = gr.Textbox(label='GPT 3.5 answer')
sources = gr.Textbox(label='Sources')
history = gr.Textbox(label='History')
topic_input.submit(search_docs, inputs=[topic_input, max_files], outputs=dd_documents)
btn_search.click(search_docs, inputs=[topic_input, max_files], outputs=dd_documents)
btn_dl.click(add_to_db, inputs=[dd_documents,tb_session_id], outputs=[db_output,tb_session_id])
btn_export.click(export_files, inputs=dd_documents, outputs=docs_input)
btn_generate_db.click(embed_files, inputs=[docs_input,tb_session_id], outputs=[db_output,tb_session_id, df_qna])
btn_reset_db.click(reset_database,inputs=[tb_session_id],outputs=[db_output])
btn_summary.click(summarize_docs, inputs=[apikey_input,tb_session_id], outputs=summary_output)
btn_askGPT.click(ask_gpt, inputs=[query_input,apikey_input,history,tb_session_id], outputs=[answer_output,sources,history])
#demo.queue(concurrency_count=10)
demo.launch(debug=False,share=False) |