Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
CHANGED
@@ -29,74 +29,13 @@ wiki_wiki = wikipediaapi.Wikipedia('Organika ([email protected])', 'en')
|
|
29 |
|
30 |
# Use a pipeline as a high-level helper
|
31 |
from transformers import pipeline
|
32 |
-
topic_model = pipeline("zero-shot-classification", model="valhalla/distilbart-mnli-12-9")
|
33 |
-
|
34 |
-
|
35 |
-
import requests
|
36 |
-
|
37 |
-
# function for Huggingface API calls
|
38 |
-
def query(payload, model_path, headers):
|
39 |
-
API_URL = "https://api-inference.huggingface.co/models/" + model_path
|
40 |
-
for retry in range(3):
|
41 |
-
response = requests.post(API_URL, headers=headers, json=payload)
|
42 |
-
if response.status_code == requests.codes.ok:
|
43 |
-
try:
|
44 |
-
results = response.json()
|
45 |
-
return results
|
46 |
-
except:
|
47 |
-
print('Invalid response received from server')
|
48 |
-
print(response)
|
49 |
-
return None
|
50 |
-
else:
|
51 |
-
# Not connected to internet maybe?
|
52 |
-
if response.status_code==404:
|
53 |
-
print('Are you connected to the internet?')
|
54 |
-
print('URL attempted = '+API_URL)
|
55 |
-
break
|
56 |
-
if response.status_code==503:
|
57 |
-
print(response.json())
|
58 |
-
continue
|
59 |
-
if response.status_code==504:
|
60 |
-
print('504 Gateway Timeout')
|
61 |
-
else:
|
62 |
-
print('Unsuccessful request, status code '+ str(response.status_code))
|
63 |
-
# print(response.json()) #debug only
|
64 |
-
print(payload)
|
65 |
-
|
66 |
-
def generate_text(prompt, model_path, text_generation_parameters, headers):
|
67 |
-
start_time = time.time()
|
68 |
-
options = {'use_cache': False, 'wait_for_model': True}
|
69 |
-
payload = {"inputs": prompt, "parameters": text_generation_parameters, "options": options}
|
70 |
-
output_list = query(payload, model_path, headers)
|
71 |
-
if not output_list:
|
72 |
-
print('Generation failed')
|
73 |
-
end_time = time.time()
|
74 |
-
duration = round(end_time - start_time, 1)
|
75 |
-
stringlist = []
|
76 |
-
if output_list and 'generated_text' in output_list[0].keys():
|
77 |
-
print(f'{len(output_list)} sample(s) of text generated in {duration} seconds.')
|
78 |
-
for gendict in output_list:
|
79 |
-
stringlist.append(gendict['generated_text'])
|
80 |
-
else:
|
81 |
-
print(output_list)
|
82 |
-
return(stringlist)
|
83 |
-
|
84 |
-
model_path = "Colby/StarCoder-1B-WoW-JSON"
|
85 |
-
parameters = {
|
86 |
-
"max_new_tokens": 250,
|
87 |
-
"return_full_text": False,
|
88 |
-
"do_sample": True,
|
89 |
-
"temperature": 0.8,
|
90 |
-
"top_p": 0.9,
|
91 |
-
"top_k": 50,
|
92 |
-
"repetition_penalty": 1.1
|
93 |
-
}
|
94 |
-
headers = {"Authorization": "Bearer " + os.environ['HF_TOKEN']}
|
95 |
|
96 |
def merlin_chat(message, history):
|
97 |
chat_text = ""
|
98 |
chat_list = []
|
99 |
-
for turn in history:
|
100 |
chat_text += f"{turn[0]}\n\n{turn[1]}\n\n"
|
101 |
chat_list.append({"role": "user", "content": turn[0]})
|
102 |
chat_list.append({"role": "assistant", "content": turn[1]})
|
@@ -111,9 +50,12 @@ def merlin_chat(message, history):
|
|
111 |
continue
|
112 |
if ent.text in ents_found:
|
113 |
continue
|
114 |
-
ents_found.append(ent.text.title())
|
115 |
r.extract_keywords_from_text(chat_text)
|
116 |
-
|
|
|
|
|
|
|
117 |
context = ""
|
118 |
scores = topic_model(chat_text, ents_found, multi_label=True)['scores']
|
119 |
if ents_found:
|
@@ -135,6 +77,8 @@ def merlin_chat(message, history):
|
|
135 |
continue
|
136 |
else:
|
137 |
context += entsum + '\n\n'
|
|
|
|
|
138 |
system_msg = {
|
139 |
'role': 'system', 'content': context
|
140 |
}
|
@@ -142,10 +86,12 @@ def merlin_chat(message, history):
|
|
142 |
user_msg = {'role': 'user', 'content': message}
|
143 |
chat_list.append(user_msg)
|
144 |
prompt = json.dumps(chat_list)[:-1] + ",{\"role\": \"assistant\", \"content\": \""
|
|
|
145 |
for attempt in range(3):
|
146 |
-
result = generate_text(prompt, model_path, parameters, headers)
|
147 |
-
|
148 |
-
|
|
|
149 |
start = 0
|
150 |
end = 0
|
151 |
cleanStr = response.lstrip()
|
@@ -161,7 +107,10 @@ def merlin_chat(message, history):
|
|
161 |
message = messages[-1]
|
162 |
if message['role'] != 'assistant':
|
163 |
continue
|
|
|
|
|
|
|
164 |
return message['content']
|
165 |
return "🤔"
|
166 |
|
167 |
-
gr.ChatInterface(merlin_chat).launch()
|
|
|
29 |
|
30 |
# Use a pipeline as a high-level helper
|
31 |
from transformers import pipeline
|
32 |
+
topic_model = pipeline("zero-shot-classification", model="valhalla/distilbart-mnli-12-9", device=0)
|
33 |
+
model = pipeline("text-generation", model="Colby/StarCoder-1B-WoW-JSON", device=0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
def merlin_chat(message, history):
|
36 |
chat_text = ""
|
37 |
chat_list = []
|
38 |
+
for turn in history[-3:]:
|
39 |
chat_text += f"{turn[0]}\n\n{turn[1]}\n\n"
|
40 |
chat_list.append({"role": "user", "content": turn[0]})
|
41 |
chat_list.append({"role": "assistant", "content": turn[1]})
|
|
|
50 |
continue
|
51 |
if ent.text in ents_found:
|
52 |
continue
|
53 |
+
ents_found.append(ent.text.title().lower())
|
54 |
r.extract_keywords_from_text(chat_text)
|
55 |
+
for phrase in r.get_ranked_phrases()[:3]:
|
56 |
+
phrase = phrase.lower()
|
57 |
+
if phrase not in ents_found:
|
58 |
+
ents_found.append(phrase)
|
59 |
context = ""
|
60 |
scores = topic_model(chat_text, ents_found, multi_label=True)['scores']
|
61 |
if ents_found:
|
|
|
77 |
continue
|
78 |
else:
|
79 |
context += entsum + '\n\n'
|
80 |
+
else:
|
81 |
+
print("not found.")
|
82 |
system_msg = {
|
83 |
'role': 'system', 'content': context
|
84 |
}
|
|
|
86 |
user_msg = {'role': 'user', 'content': message}
|
87 |
chat_list.append(user_msg)
|
88 |
prompt = json.dumps(chat_list)[:-1] + ",{\"role\": \"assistant\", \"content\": \""
|
89 |
+
print(f"PROMPT: {prompt}")
|
90 |
for attempt in range(3):
|
91 |
+
#result = generate_text(prompt, model_path, parameters, headers)
|
92 |
+
result = model(prompt,return_full_text=False, max_new_tokens=256, temperature=0.8, repetition_penalty=1.1)
|
93 |
+
response = result[0]['generated_text']
|
94 |
+
print(f"COMPLETION: {response}") # so we can see it in logs
|
95 |
start = 0
|
96 |
end = 0
|
97 |
cleanStr = response.lstrip()
|
|
|
107 |
message = messages[-1]
|
108 |
if message['role'] != 'assistant':
|
109 |
continue
|
110 |
+
msg_text = message['content']
|
111 |
+
if chat_text.find(msg_text) >= 0:
|
112 |
+
continue
|
113 |
return message['content']
|
114 |
return "🤔"
|
115 |
|
116 |
+
gr.ChatInterface(merlin_chat).launch(share=True)
|