Spaces:
Runtime error
Runtime error
import json | |
import gradio as gr | |
import spacy | |
spacy.cli.download('en_core_web_sm') | |
nlp = spacy.load('en_core_web_sm') | |
import nltk | |
nltk.download('stopwords') | |
nltk.download('punkt') | |
from rake_nltk import Rake | |
r = Rake() | |
import wikipediaapi | |
wiki_wiki = wikipediaapi.Wikipedia('Organika ([email protected])', 'en') | |
## ctransformers disabled for now | |
# from ctransformers import AutoModelForCausalLM | |
# model = AutoModelForCausalLM.from_pretrained( | |
# "Colby/StarCoder-3B-WoW-JSON", | |
# model_file="StarCoder-3B-WoW-JSON-ggml.bin", | |
# model_type="gpt_bigcode" | |
# ) | |
# Use a pipeline as a high-level helper | |
from transformers import pipeline | |
topic_model = pipeline("zero-shot-classification", model="valhalla/distilbart-mnli-12-9") | |
model = pipeline("text-generation", model="Colby/StarCoder-3B-WoW-JSON") | |
def merlin_chat(message, history): | |
chat_text = "" | |
chat_json = "" | |
for turn in history: | |
chat_text += f"USER: {turn[0]}\n\nASSISTANT: {turn[1]}\n\n" | |
chat_json += json.dumps({"role": "user", "content": turn[0]}) | |
chat_json += json.dumps({"role": "assistant", "content": turn[1]}) | |
chat_text += f"USER: {message}\n" | |
doc = nlp(chat_text) | |
ents_found = [] | |
if doc.ents: | |
for ent in doc.ents: | |
if len(ents_found) == 3: | |
break | |
if ent.text.isnumeric() or ent.label in ["DATE","TIME","PERCENT","MONEY","QUANTITY","ORDINAL","CARDINAL"]: | |
continue | |
if ent.text in ents_found: | |
continue | |
ents_found.append(ent.text.title()) | |
r.extract_keywords_from_text(chat_text) | |
ents_found = ents_found + r.get_ranked_phrases()[:3] | |
context = "" | |
scores = topic_model(chat_text, ents_found, multi_label=True)['scores'] | |
if ents_found: | |
max_score = 0 | |
for k in range(len(ents_found)): | |
if scores[k] < 0.5: | |
continue | |
entity = ents_found[k] | |
if scores[k] > max_score: | |
max_score = scores[k] | |
max_topic = entity | |
print(f'# Looking up {entity} on Wikipedia... ', end='') | |
wiki_page = wiki_wiki.page(entity) | |
if wiki_page.exists(): | |
print("page found... ") | |
entsum = wiki_page.summary | |
if "may refer to" in entsum or "may also refer to" in entsum: | |
print(" ambiguous, skipping.") | |
continue | |
else: | |
context += entsum + '\n\n' | |
context | |
system_msg = { | |
'role': 'system', 'content': context + f'\n\nThe following is a conversation about {max_topic}.' | |
} | |
user_msg = {'role': 'user', 'content': message} | |
prompt = "[" + json.dumps(system_msg) + chat_json + json.dumps(user_msg) + "{'role': 'assistant, 'content': '*recalls \"" | |
for attempt in range(3): | |
result = model( | |
prompt, | |
return_full_text=False, | |
max_length=250, | |
handle_long_generation="hole" | |
) | |
response = result[0]['generated_text'] | |
start = 0 | |
end = 0 | |
cleanStr = response.lstrip() | |
start = cleanStr.find('{') # this should skip over whatever it recalls to what it says next | |
if start<=0: | |
continue | |
cleanStr = cleanStr[start:] | |
end = cleanStr.find('}') + 1 | |
if end<=0: | |
continue | |
cleanStr = cleanStr[:end] | |
message = json.loads(cleanStr) | |
if message['role'] != 'assistant': | |
continue | |
return message['content'] | |
return "🤔" | |
gr.ChatInterface(merlin_chat).launch() |