Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
# coding=utf-8 | |
""" | |
Commonly used constants. | |
""" | |
TEXT_ONLY_DATASET_DESCRIPTION = ( | |
""" | |
"text_only": a dataset with only raw text instances, with following format: | |
{ | |
"type": "text_only", | |
"instances": [ | |
{ "text": "TEXT_1" }, | |
{ "text": "TEXT_2" }, | |
... | |
] | |
} | |
""" | |
).lstrip("\n") | |
TEXT_ONLY_DATASET_DETAILS = ( | |
""" | |
For example, | |
```python | |
from lmflow.datasets import Dataset | |
data_dict = { | |
"type": "text_only", | |
"instances": [ | |
{ "text": "Human: Hello. Bot: Hi!" }, | |
{ "text": "Human: How are you today? Bot: Fine, thank you!" }, | |
] | |
} | |
dataset = Dataset.create_from_dict(data_dict) | |
``` | |
You may also save the corresponding format to json, | |
```python | |
import json | |
from lmflow.args import DatasetArguments | |
from lmflow.datasets import Dataset | |
data_dict = { | |
"type": "text_only", | |
"instances": [ | |
{ "text": "Human: Hello. Bot: Hi!" }, | |
{ "text": "Human: How are you today? Bot: Fine, thank you!" }, | |
] | |
} | |
with open("data.json", "w") as fout: | |
json.dump(data_dict, fout) | |
data_args = DatasetArgument(dataset_path="data.json") | |
dataset = Dataset(data_args) | |
new_data_dict = dataset.to_dict() | |
# `new_data_dict` Should have the same content as `data_dict` | |
``` | |
""" | |
).lstrip("\n") | |
TEXT2TEXT_DATASET_DESCRIPTION = ( | |
""" | |
"text2text": a dataset with input & output instances, with following format: | |
{ | |
"type": "text2text", | |
"instances": [ | |
{ "input": "INPUT_1", "output": "OUTPUT_1" }, | |
{ "input": "INPUT_2", "output": "OUTPUT_2" }, | |
... | |
] | |
} | |
""" | |
).lstrip("\n") | |
TEXT2TEXT_DATASET_DETAILS = ( | |
""" | |
For example, | |
```python | |
from lmflow.datasets import Dataset | |
data_dict = { | |
"type": "text2text", | |
"instances": [ | |
{ | |
"input": "Human: Hello.", | |
"output": "Bot: Hi!", | |
}, | |
{ | |
"input": "Human: How are you today?", | |
"output": "Bot: Fine, thank you! And you?", | |
} | |
] | |
} | |
dataset = Dataset.create_from_dict(data_dict) | |
``` | |
You may also save the corresponding format to json, | |
```python | |
import json | |
from lmflow.args import DatasetArguments | |
from lmflow.datasets import Dataset | |
data_dict = { | |
"type": "text2text", | |
"instances": [ | |
{ | |
"input": "Human: Hello.", | |
"output": "Bot: Hi!", | |
}, | |
{ | |
"input": "Human: How are you today?", | |
"output": "Bot: Fine, thank you! And you?", | |
} | |
] | |
} | |
with open("data.json", "w") as fout: | |
json.dump(data_dict, fout) | |
data_args = DatasetArgument(dataset_path="data.json") | |
dataset = Dataset(data_args) | |
new_data_dict = dataset.to_dict() | |
# `new_data_dict` Should have the same content as `data_dict` | |
``` | |
""" | |
).lstrip("\n") | |
TEXT_ONLY_DATASET_LONG_DESCRITION = ( | |
TEXT_ONLY_DATASET_DESCRIPTION + TEXT_ONLY_DATASET_DETAILS | |
) | |
TEXT2TEXT_DATASET_LONG_DESCRITION = ( | |
TEXT2TEXT_DATASET_DESCRIPTION + TEXT2TEXT_DATASET_DETAILS | |
) | |