Spaces:
Runtime error
Runtime error
File size: 6,590 Bytes
3455d37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
"""The program includes several functions: setting a random seed,
loading data from a JSON file, batching data, and extracting answers from generated text.
"""
import random
import numpy as np
import torch
import json
import re
def set_random_seed(seed: int):
"""
Set the random seed for `random`, `numpy`, `torch`, `torch.cuda`.
Parameters
------------
seed : int
The default seed.
"""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
def load_data(file_name: str):
"""
Load data with file name.
Parameters
------------
file_name : str.
The dataset file name.
Returns
------------
inputs : list.
The input texts of the dataset.
outputs : list.
The output texts file datasets.
len : int.
The length of the dataset.
"""
inputs = []
outputs = []
type = ""
with open(file_name, encoding='utf-8') as f:
json_data = json.load(f)
type = json_data["type"]
for line in json_data["instances"]:
inputs.append(line["input"])
outputs.append(line["output"])
print(f"load dataset {file_name} success.\n")
print(f"Type : {type}, datasize : {len(outputs)}")
return inputs, outputs, len(outputs)
def batchlize(examples: list, batch_size: int, random_shuffle: bool):
"""
Convert examples to a dataloader.
Parameters
------------
examples : list.
Data list.
batch_size : int.
random_shuffle : bool
If true, the dataloader shuffle the training data.
Returns
------------
dataloader:
Dataloader with batch generator.
"""
size = 0
dataloader = []
length = len(examples)
if (random_shuffle):
random.shuffle(examples)
while size < length:
if length - size > batch_size:
dataloader.append(examples[size : size+batch_size])
size += batch_size
else:
dataloader.append(examples[size : size+(length-size)])
size += (length - size)
return dataloader
def answer_extraction(response, answer_type=None): #use this funtion to extract answers from generated text
"""
Use this funtion to extract answers from generated text
Parameters
------------
args :
Arguments.
response : str
plain string response.
Returns
------------
answer:
Decoded answer (such as A, B, C, D, E for mutiple-choice QA).
"""
# temp = response["generated_text"]
temp = response
if answer_type in ("gsm8k", "svamp", "asdiv", "addsub", "singleeq", "multiarith", "math"):
temp = temp.replace(",", "")
temp = [s for s in re.findall(r'-?\d+\.?\d*', temp)]
elif answer_type in ("aqua", "csqa", "multiple_choice"):
temp = re.findall(r'A|B|C|D|E', temp)
elif answer_type in ("strategyqa", "coin_flip"):
temp = temp.lower()
temp = re.sub("\"|\'|\n|\.|\s|\:|\,"," ", temp)
temp = temp.split(" ")
temp = [i for i in temp if i in ("yes", "no")]
elif answer_type in ("last_letters"):
temp = re.sub("\"|\'|\n|\.|\s","", temp)
temp = [temp]
elif answer_type in ("pubmedqa", "binary_choice"):
# pattern = "Output: (yes|no|maybe)"
# sttr = re.search(pattern, temp)
# answer = sttr.group(0)[8:] if sttr is not None else "N/A"
pattern = "(answer|Answer|ANSWER|output|Output|OUTPUT|A): \(*(yes|Yes|YES|no|No|NO|maybe|Maybe|MAYBE)"
sttr = re.search(pattern, temp)
if sttr is not None:
mid_answer = sttr.group(0)
mid_answer = mid_answer.split(":")[-1].strip()
answer = mid_answer.lower()
else:
pattern = "(yes|Yes|YES|no|No|NO|maybe|Maybe|MAYBE)(\.|\s)"
sttr = re.search(pattern, temp)
if sttr is not None:
answer = sttr.group(0)[:-1].lower()
else:
answer = "N/A"
return answer
elif answer_type == "medmcqa":
# pattern = "Output: (A|B|C|D)."
# sttr = re.search(pattern, temp)
# answer = sttr.group(0)[8:-1].lower() if sttr is not None else "N/A"
pattern = "(answer|Answer|ANSWER|output|Output|OUTPUT|A): \(*(A|B|C|D|a|b|c|d)"
sttr = re.search(pattern, temp)
if sttr is not None:
mid_answer = sttr.group(0)
answer = mid_answer[-1].lower()
else:
pattern = "\(*(A|B|C|D|a|b|c|d)\)*(\.|\s)"
sttr = re.search(pattern, temp)
if sttr is not None:
if '(' in sttr.group(0):
answer = sttr.group(0)[1].lower()
else:
answer = sttr.group(0)[0].lower()
else:
answer = "N/A"
return answer
elif answer_type == "usmle":
# pattern = "Output: (A|B|C|D)."
# sttr = re.search(pattern, temp)
# answer = sttr.group(0)[8:-1].lower() if sttr is not None else "N/A"
pattern = "(Answer|Output|A): \(*(A|B|C|D|a|b|c|d)"
sttr = re.search(pattern, temp)
if sttr is not None:
mid_answer = sttr.group(0)
answer = mid_answer[-1].lower()
else:
pattern = "\(*(A|B|C|D|a|b|c|d)\)*(\.|\s)"
sttr = re.search(pattern, temp)
if sttr is not None:
if '(' in sttr.group(0):
answer = sttr.group(0)[1].lower()
else:
answer = sttr.group(0)[0].lower()
else:
answer = "N/A"
return answer
elif answer_type == "text":
return response
else:
raise NotImplementedError(f"Unsupported answer type: {answer_type}")
if len(temp) != 0:
answer = temp[-1]
# if there is . at the end of answer, remove it
# e.g. answer = 64.
if answer != "":
if answer[-1] == ".":
answer = answer[:-1]
# round the answer to nearest integer
if answer_type in ("gsm8k", "svamp"):
try:
answer = str(round(float(answer)))
except:
answer = "" # no sol or sol doesn't have valid format
elif answer_type in ("last_letters"):
try:
answer = answer[-args.concat_length:]
except:
answer = ""
else:
answer = ""
return answer
|