import json, random, string, time from aiohttp import ClientSession from ..typing import Any, CreateResult from .base_provider import AsyncProvider, format_prompt class Qidinam(AsyncProvider): url = "https://ai.qidianym.net/api/chat-process" working = True supports_gpt_35_turbo = True supports_stream = True @classmethod async def create_async( cls, model: str, messages: dict[str, str], **kwargs: Any, ) -> CreateResult: base = "" for message in messages: base += "%s: %s\n" % (message["role"], message["content"]) base += "assistant:" headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36" } data: dict[str, Any] = { "prompt": base, "options": {}, "systemMessage": "You are ChatGPT, a large language model trained by OpenAI. Follow the user's instructions carefully. Respond using markdown.", "temperature": kwargs.get("temperature", 0.8), "top_p": kwargs.get("top_p", 1), } url = "https://ai.qidianym.net/api/chat-process" # Use aiohttp for asynchronous HTTP requests async with ClientSession() as session: async with session.post(url, headers=headers, json=data) as response: response.raise_for_status() lines = response.text.strip().split("\n") res = json.loads(lines[-1]) return await res["text"] @classmethod @property def params(cls): params = [ ("model", "str"), ("messages", "list[dict[str, str]]"), ("stream", "bool"), ("temperature", "float"), ("top_p", "int"), ] param = ", ".join([": ".join(p) for p in params]) return f"g4f.provider.{cls.__name__} supports: ({param})"