File size: 7,949 Bytes
870ab6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
from __future__ import annotations

import json
from copy import deepcopy
from typing import TYPE_CHECKING, Optional, Union

import fastapi
from gradio_client.documentation import document, set_documentation_group

from gradio import utils
from gradio.data_classes import PredictBody
from gradio.exceptions import Error
from gradio.helpers import EventData

if TYPE_CHECKING:
    from gradio.routes import App

set_documentation_group("routes")


class Obj:
    """
    Using a class to convert dictionaries into objects. Used by the `Request` class.
    Credit: https://www.geeksforgeeks.org/convert-nested-python-dictionary-to-object/
    """

    def __init__(self, dict_):
        self.__dict__.update(dict_)
        for key, value in dict_.items():
            if isinstance(value, (dict, list)):
                value = Obj(value)
            setattr(self, key, value)

    def __getitem__(self, item):
        return self.__dict__[item]

    def __setitem__(self, item, value):
        self.__dict__[item] = value

    def __iter__(self):
        for key, value in self.__dict__.items():
            if isinstance(value, Obj):
                yield (key, dict(value))
            else:
                yield (key, value)

    def __contains__(self, item) -> bool:
        if item in self.__dict__:
            return True
        for value in self.__dict__.values():
            if isinstance(value, Obj) and item in value:
                return True
        return False

    def keys(self):
        return self.__dict__.keys()

    def values(self):
        return self.__dict__.values()

    def items(self):
        return self.__dict__.items()

    def __str__(self) -> str:
        return str(self.__dict__)

    def __repr__(self) -> str:
        return str(self.__dict__)


@document()
class Request:
    """
    A Gradio request object that can be used to access the request headers, cookies,
    query parameters and other information about the request from within the prediction
    function. The class is a thin wrapper around the fastapi.Request class. Attributes
    of this class include: `headers`, `client`, `query_params`, and `path_params`. If
    auth is enabled, the `username` attribute can be used to get the logged in user.
    Example:
        import gradio as gr
        def echo(name, request: gr.Request):
            print("Request headers dictionary:", request.headers)
            print("IP address:", request.client.host)
            return name
        io = gr.Interface(echo, "textbox", "textbox").launch()
    """

    def __init__(
        self,
        request: fastapi.Request | None = None,
        username: str | None = None,
        **kwargs,
    ):
        """
        Can be instantiated with either a fastapi.Request or by manually passing in
        attributes (needed for websocket-based queueing).
        Parameters:
            request: A fastapi.Request
        """
        self.request = request
        self.username = username
        self.kwargs: dict = kwargs

    def dict_to_obj(self, d):
        if isinstance(d, dict):
            return json.loads(json.dumps(d), object_hook=Obj)
        else:
            return d

    def __getattr__(self, name):
        if self.request:
            return self.dict_to_obj(getattr(self.request, name))
        else:
            try:
                obj = self.kwargs[name]
            except KeyError as ke:
                raise AttributeError(
                    f"'Request' object has no attribute '{name}'"
                ) from ke
            return self.dict_to_obj(obj)


class FnIndexInferError(Exception):
    pass


def infer_fn_index(app: App, api_name: str, body: PredictBody) -> int:
    if body.fn_index is None:
        for i, fn in enumerate(app.get_blocks().dependencies):
            if fn["api_name"] == api_name:
                return i

        raise FnIndexInferError(f"Could not infer fn_index for api_name {api_name}.")
    else:
        return body.fn_index


def compile_gr_request(
    app: App,
    body: PredictBody,
    fn_index_inferred: int,
    username: Optional[str],
    request: Optional[fastapi.Request],
):
    # If this fn_index cancels jobs, then the only input we need is the
    # current session hash
    if app.get_blocks().dependencies[fn_index_inferred]["cancels"]:
        body.data = [body.session_hash]
    if body.request:
        if body.batched:
            gr_request = [Request(username=username, **req) for req in body.request]
        else:
            assert isinstance(body.request, dict)
            gr_request = Request(username=username, **body.request)
    else:
        if request is None:
            raise ValueError("request must be provided if body.request is None")
        gr_request = Request(username=username, request=request)

    return gr_request


def restore_session_state(app: App, body: PredictBody):
    fn_index = body.fn_index
    session_hash = getattr(body, "session_hash", None)
    if session_hash is not None:
        if session_hash not in app.state_holder:
            app.state_holder[session_hash] = {
                _id: deepcopy(getattr(block, "value", None))
                for _id, block in app.get_blocks().blocks.items()
                if getattr(block, "stateful", False)
            }
        session_state = app.state_holder[session_hash]
        # The should_reset set keeps track of the fn_indices
        # that have been cancelled. When a job is cancelled,
        # the /reset route will mark the jobs as having been reset.
        # That way if the cancel job finishes BEFORE the job being cancelled
        # the job being cancelled will not overwrite the state of the iterator.
        if fn_index in app.iterators_to_reset[session_hash]:
            iterators = {}
            app.iterators_to_reset[session_hash].remove(fn_index)
        else:
            iterators = app.iterators[session_hash]
    else:
        session_state = {}
        iterators = {}

    return session_state, iterators


async def call_process_api(
    app: App,
    body: PredictBody,
    gr_request: Union[Request, list[Request]],
    fn_index_inferred,
):
    session_state, iterators = restore_session_state(app=app, body=body)

    dependency = app.get_blocks().dependencies[fn_index_inferred]

    target = dependency["targets"][0] if len(dependency["targets"]) else None
    event_data = EventData(
        app.get_blocks().blocks.get(target) if target else None,
        body.event_data,
    )

    event_id = getattr(body, "event_id", None)

    fn_index = body.fn_index
    session_hash = getattr(body, "session_hash", None)
    inputs = body.data

    batch_in_single_out = not body.batched and dependency["batch"]
    if batch_in_single_out:
        inputs = [inputs]

    try:
        with utils.MatplotlibBackendMananger():
            output = await app.get_blocks().process_api(
                fn_index=fn_index_inferred,
                inputs=inputs,
                request=gr_request,
                state=session_state,
                iterators=iterators,
                session_hash=session_hash,
                event_id=event_id,
                event_data=event_data,
            )
        iterator = output.pop("iterator", None)
        if hasattr(body, "session_hash"):
            app.iterators[body.session_hash][fn_index] = iterator
        if isinstance(output, Error):
            raise output
    except BaseException:
        iterator = iterators.get(fn_index, None)
        if iterator is not None:  # close off any streams that are still open
            run_id = id(iterator)
            pending_streams: dict[int, list] = (
                app.get_blocks().pending_streams[session_hash].get(run_id, {})
            )
            for stream in pending_streams.values():
                stream.append(None)
        raise

    if batch_in_single_out:
        output["data"] = output["data"][0]

    return output