File size: 22,815 Bytes
870ab6b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 |
"""This module should not be used directly as its API is subject to change. Instead,
use the `gr.Blocks.load()` or `gr.load()` functions."""
from __future__ import annotations
import json
import re
import warnings
from typing import TYPE_CHECKING, Callable
import requests
from gradio_client import Client
from gradio_client.documentation import document, set_documentation_group
import gradio
from gradio import components, utils
from gradio.context import Context
from gradio.deprecation import warn_deprecation
from gradio.exceptions import Error, TooManyRequestsError
from gradio.external_utils import (
cols_to_rows,
encode_to_base64,
get_tabular_examples,
postprocess_label,
rows_to_cols,
streamline_spaces_interface,
)
from gradio.processing_utils import extract_base64_data, to_binary
if TYPE_CHECKING:
from gradio.blocks import Blocks
from gradio.interface import Interface
set_documentation_group("helpers")
@document()
def load(
name: str,
src: str | None = None,
api_key: str | None = None,
hf_token: str | None = None,
alias: str | None = None,
**kwargs,
) -> Blocks:
"""
Method that constructs a Blocks from a Hugging Face repo. Can accept
model repos (if src is "models") or Space repos (if src is "spaces"). The input
and output components are automatically loaded from the repo.
Parameters:
name: the name of the model (e.g. "gpt2" or "facebook/bart-base") or space (e.g. "flax-community/spanish-gpt2"), can include the `src` as prefix (e.g. "models/facebook/bart-base")
src: the source of the model: `models` or `spaces` (or leave empty if source is provided as a prefix in `name`)
api_key: Deprecated. Please use the `hf_token` parameter instead.
hf_token: optional access token for loading private Hugging Face Hub models or spaces. Find your token here: https://huggingface.co/settings/tokens. Warning: only provide this if you are loading a trusted private Space as it can be read by the Space you are loading.
alias: optional string used as the name of the loaded model instead of the default name (only applies if loading a Space running Gradio 2.x)
Returns:
a Gradio Blocks object for the given model
Example:
import gradio as gr
demo = gr.load("gradio/question-answering", src="spaces")
demo.launch()
"""
if hf_token is None and api_key:
warn_deprecation(
"The `api_key` parameter will be deprecated. "
"Please use the `hf_token` parameter going forward."
)
hf_token = api_key
return load_blocks_from_repo(
name=name, src=src, hf_token=hf_token, alias=alias, **kwargs
)
def load_blocks_from_repo(
name: str,
src: str | None = None,
hf_token: str | None = None,
alias: str | None = None,
**kwargs,
) -> Blocks:
"""Creates and returns a Blocks instance from a Hugging Face model or Space repo."""
if src is None:
# Separate the repo type (e.g. "model") from repo name (e.g. "google/vit-base-patch16-224")
tokens = name.split("/")
assert (
len(tokens) > 1
), "Either `src` parameter must be provided, or `name` must be formatted as {src}/{repo name}"
src = tokens[0]
name = "/".join(tokens[1:])
factory_methods: dict[str, Callable] = {
# for each repo type, we have a method that returns the Interface given the model name & optionally an api_key
"huggingface": from_model,
"models": from_model,
"spaces": from_spaces,
}
assert (
src.lower() in factory_methods
), f"parameter: src must be one of {factory_methods.keys()}"
if hf_token is not None:
if Context.hf_token is not None and Context.hf_token != hf_token:
warnings.warn(
"""You are loading a model/Space with a different access token than the one you used to load a previous model/Space. This is not recommended, as it may cause unexpected behavior."""
)
Context.hf_token = hf_token
blocks: gradio.Blocks = factory_methods[src](name, hf_token, alias, **kwargs)
return blocks
def chatbot_preprocess(text, state):
payload = {
"inputs": {"generated_responses": None, "past_user_inputs": None, "text": text}
}
if state is not None:
payload["inputs"]["generated_responses"] = state["conversation"][
"generated_responses"
]
payload["inputs"]["past_user_inputs"] = state["conversation"][
"past_user_inputs"
]
return payload
def chatbot_postprocess(response):
response_json = response.json()
chatbot_value = list(
zip(
response_json["conversation"]["past_user_inputs"],
response_json["conversation"]["generated_responses"],
)
)
return chatbot_value, response_json
def from_model(model_name: str, hf_token: str | None, alias: str | None, **kwargs):
model_url = f"https://huggingface.co/{model_name}"
api_url = f"https://api-inference.huggingface.co/models/{model_name}"
print(f"Fetching model from: {model_url}")
headers = {"Authorization": f"Bearer {hf_token}"} if hf_token is not None else {}
# Checking if model exists, and if so, it gets the pipeline
response = requests.request("GET", api_url, headers=headers)
assert (
response.status_code == 200
), f"Could not find model: {model_name}. If it is a private or gated model, please provide your Hugging Face access token (https://huggingface.co/settings/tokens) as the argument for the `api_key` parameter."
p = response.json().get("pipeline_tag")
pipelines = {
"audio-classification": {
# example model: ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition
"inputs": components.Audio(
source="upload", type="filepath", label="Input", render=False
),
"outputs": components.Label(label="Class", render=False),
"preprocess": lambda i: to_binary,
"postprocess": lambda r: postprocess_label(
{i["label"].split(", ")[0]: i["score"] for i in r.json()}
),
},
"audio-to-audio": {
# example model: facebook/xm_transformer_sm_all-en
"inputs": components.Audio(
source="upload", type="filepath", label="Input", render=False
),
"outputs": components.Audio(label="Output", render=False),
"preprocess": to_binary,
"postprocess": encode_to_base64,
},
"automatic-speech-recognition": {
# example model: facebook/wav2vec2-base-960h
"inputs": components.Audio(
source="upload", type="filepath", label="Input", render=False
),
"outputs": components.Textbox(label="Output", render=False),
"preprocess": to_binary,
"postprocess": lambda r: r.json()["text"],
},
"conversational": {
"inputs": [components.Textbox(render=False), components.State(render=False)], # type: ignore
"outputs": [components.Chatbot(render=False), components.State(render=False)], # type: ignore
"preprocess": chatbot_preprocess,
"postprocess": chatbot_postprocess,
},
"feature-extraction": {
# example model: julien-c/distilbert-feature-extraction
"inputs": components.Textbox(label="Input", render=False),
"outputs": components.Dataframe(label="Output", render=False),
"preprocess": lambda x: {"inputs": x},
"postprocess": lambda r: r.json()[0],
},
"fill-mask": {
"inputs": components.Textbox(label="Input", render=False),
"outputs": components.Label(label="Classification", render=False),
"preprocess": lambda x: {"inputs": x},
"postprocess": lambda r: postprocess_label(
{i["token_str"]: i["score"] for i in r.json()}
),
},
"image-classification": {
# Example: google/vit-base-patch16-224
"inputs": components.Image(
type="filepath", label="Input Image", render=False
),
"outputs": components.Label(label="Classification", render=False),
"preprocess": to_binary,
"postprocess": lambda r: postprocess_label(
{i["label"].split(", ")[0]: i["score"] for i in r.json()}
),
},
"question-answering": {
# Example: deepset/xlm-roberta-base-squad2
"inputs": [
components.Textbox(lines=7, label="Context", render=False),
components.Textbox(label="Question", render=False),
],
"outputs": [
components.Textbox(label="Answer", render=False),
components.Label(label="Score", render=False),
],
"preprocess": lambda c, q: {"inputs": {"context": c, "question": q}},
"postprocess": lambda r: (r.json()["answer"], {"label": r.json()["score"]}),
},
"summarization": {
# Example: facebook/bart-large-cnn
"inputs": components.Textbox(label="Input", render=False),
"outputs": components.Textbox(label="Summary", render=False),
"preprocess": lambda x: {"inputs": x},
"postprocess": lambda r: r.json()[0]["summary_text"],
},
"text-classification": {
# Example: distilbert-base-uncased-finetuned-sst-2-english
"inputs": components.Textbox(label="Input", render=False),
"outputs": components.Label(label="Classification", render=False),
"preprocess": lambda x: {"inputs": x},
"postprocess": lambda r: postprocess_label(
{i["label"].split(", ")[0]: i["score"] for i in r.json()[0]}
),
},
"text-generation": {
# Example: gpt2
"inputs": components.Textbox(label="Input", render=False),
"outputs": components.Textbox(label="Output", render=False),
"preprocess": lambda x: {"inputs": x},
"postprocess": lambda r: r.json()[0]["generated_text"],
},
"text2text-generation": {
# Example: valhalla/t5-small-qa-qg-hl
"inputs": components.Textbox(label="Input", render=False),
"outputs": components.Textbox(label="Generated Text", render=False),
"preprocess": lambda x: {"inputs": x},
"postprocess": lambda r: r.json()[0]["generated_text"],
},
"translation": {
"inputs": components.Textbox(label="Input", render=False),
"outputs": components.Textbox(label="Translation", render=False),
"preprocess": lambda x: {"inputs": x},
"postprocess": lambda r: r.json()[0]["translation_text"],
},
"zero-shot-classification": {
# Example: facebook/bart-large-mnli
"inputs": [
components.Textbox(label="Input", render=False),
components.Textbox(
label="Possible class names (" "comma-separated)", render=False
),
components.Checkbox(label="Allow multiple true classes", render=False),
],
"outputs": components.Label(label="Classification", render=False),
"preprocess": lambda i, c, m: {
"inputs": i,
"parameters": {"candidate_labels": c, "multi_class": m},
},
"postprocess": lambda r: postprocess_label(
{
r.json()["labels"][i]: r.json()["scores"][i]
for i in range(len(r.json()["labels"]))
}
),
},
"sentence-similarity": {
# Example: sentence-transformers/distilbert-base-nli-stsb-mean-tokens
"inputs": [
components.Textbox(
value="That is a happy person",
label="Source Sentence",
render=False,
),
components.Textbox(
lines=7,
placeholder="Separate each sentence by a newline",
label="Sentences to compare to",
render=False,
),
],
"outputs": components.Label(label="Classification", render=False),
"preprocess": lambda src, sentences: {
"inputs": {
"source_sentence": src,
"sentences": [s for s in sentences.splitlines() if s != ""],
}
},
"postprocess": lambda r: postprocess_label(
{f"sentence {i}": v for i, v in enumerate(r.json())}
),
},
"text-to-speech": {
# Example: julien-c/ljspeech_tts_train_tacotron2_raw_phn_tacotron_g2p_en_no_space_train
"inputs": components.Textbox(label="Input", render=False),
"outputs": components.Audio(label="Audio", render=False),
"preprocess": lambda x: {"inputs": x},
"postprocess": encode_to_base64,
},
"text-to-image": {
# example model: osanseviero/BigGAN-deep-128
"inputs": components.Textbox(label="Input", render=False),
"outputs": components.Image(label="Output", render=False),
"preprocess": lambda x: {"inputs": x},
"postprocess": encode_to_base64,
},
"token-classification": {
# example model: huggingface-course/bert-finetuned-ner
"inputs": components.Textbox(label="Input", render=False),
"outputs": components.HighlightedText(label="Output", render=False),
"preprocess": lambda x: {"inputs": x},
"postprocess": lambda r: r, # Handled as a special case in query_huggingface_api()
},
"document-question-answering": {
# example model: impira/layoutlm-document-qa
"inputs": [
components.Image(type="filepath", label="Input Document", render=False),
components.Textbox(label="Question", render=False),
],
"outputs": components.Label(label="Label", render=False),
"preprocess": lambda img, q: {
"inputs": {
"image": extract_base64_data(img), # Extract base64 data
"question": q,
}
},
"postprocess": lambda r: postprocess_label(
{i["answer"]: i["score"] for i in r.json()}
),
},
"visual-question-answering": {
# example model: dandelin/vilt-b32-finetuned-vqa
"inputs": [
components.Image(type="filepath", label="Input Image", render=False),
components.Textbox(label="Question", render=False),
],
"outputs": components.Label(label="Label", render=False),
"preprocess": lambda img, q: {
"inputs": {
"image": extract_base64_data(img),
"question": q,
}
},
"postprocess": lambda r: postprocess_label(
{i["answer"]: i["score"] for i in r.json()}
),
},
"image-to-text": {
# example model: Salesforce/blip-image-captioning-base
"inputs": components.Image(
type="filepath", label="Input Image", render=False
),
"outputs": components.Textbox(label="Generated Text", render=False),
"preprocess": to_binary,
"postprocess": lambda r: r.json()[0]["generated_text"],
},
}
if p in ["tabular-classification", "tabular-regression"]:
example_data = get_tabular_examples(model_name)
col_names, example_data = cols_to_rows(example_data)
example_data = [[example_data]] if example_data else None
pipelines[p] = {
"inputs": components.Dataframe(
label="Input Rows",
type="pandas",
headers=col_names,
col_count=(len(col_names), "fixed"),
render=False,
),
"outputs": components.Dataframe(
label="Predictions", type="array", headers=["prediction"], render=False
),
"preprocess": rows_to_cols,
"postprocess": lambda r: {
"headers": ["prediction"],
"data": [[pred] for pred in json.loads(r.text)],
},
"examples": example_data,
}
if p is None or p not in pipelines:
raise ValueError(f"Unsupported pipeline type: {p}")
pipeline = pipelines[p]
def query_huggingface_api(*params):
# Convert to a list of input components
data = pipeline["preprocess"](*params)
if isinstance(
data, dict
): # HF doesn't allow additional parameters for binary files (e.g. images or audio files)
data.update({"options": {"wait_for_model": True}})
data = json.dumps(data)
response = requests.request("POST", api_url, headers=headers, data=data)
if response.status_code != 200:
errors_json = response.json()
errors, warns = "", ""
if errors_json.get("error"):
errors = f", Error: {errors_json.get('error')}"
if errors_json.get("warnings"):
warns = f", Warnings: {errors_json.get('warnings')}"
raise Error(
f"Could not complete request to HuggingFace API, Status Code: {response.status_code}"
+ errors
+ warns
)
if (
p == "token-classification"
): # Handle as a special case since HF API only returns the named entities and we need the input as well
ner_groups = response.json()
input_string = params[0]
response = utils.format_ner_list(input_string, ner_groups)
output = pipeline["postprocess"](response)
return output
if alias is None:
query_huggingface_api.__name__ = model_name
else:
query_huggingface_api.__name__ = alias
interface_info = {
"fn": query_huggingface_api,
"inputs": pipeline["inputs"],
"outputs": pipeline["outputs"],
"title": model_name,
"examples": pipeline.get("examples"),
}
kwargs = dict(interface_info, **kwargs)
# So interface doesn't run pre/postprocess
# except for conversational interfaces which
# are stateful
kwargs["_api_mode"] = p != "conversational"
interface = gradio.Interface(**kwargs)
return interface
def from_spaces(
space_name: str, hf_token: str | None, alias: str | None, **kwargs
) -> Blocks:
space_url = f"https://huggingface.co/spaces/{space_name}"
print(f"Fetching Space from: {space_url}")
headers = {}
if hf_token is not None:
headers["Authorization"] = f"Bearer {hf_token}"
iframe_url = (
requests.get(
f"https://huggingface.co/api/spaces/{space_name}/host", headers=headers
)
.json()
.get("host")
)
if iframe_url is None:
raise ValueError(
f"Could not find Space: {space_name}. If it is a private or gated Space, please provide your Hugging Face access token (https://huggingface.co/settings/tokens) as the argument for the `api_key` parameter."
)
r = requests.get(iframe_url, headers=headers)
result = re.search(
r"window.gradio_config = (.*?);[\s]*</script>", r.text
) # some basic regex to extract the config
try:
config = json.loads(result.group(1)) # type: ignore
except AttributeError as ae:
raise ValueError(f"Could not load the Space: {space_name}") from ae
if "allow_flagging" in config: # Create an Interface for Gradio 2.x Spaces
return from_spaces_interface(
space_name, config, alias, hf_token, iframe_url, **kwargs
)
else: # Create a Blocks for Gradio 3.x Spaces
if kwargs:
warnings.warn(
"You cannot override parameters for this Space by passing in kwargs. "
"Instead, please load the Space as a function and use it to create a "
"Blocks or Interface locally. You may find this Guide helpful: "
"https://gradio.app/using_blocks_like_functions/"
)
return from_spaces_blocks(space=space_name, hf_token=hf_token)
def from_spaces_blocks(space: str, hf_token: str | None) -> Blocks:
client = Client(space, hf_token=hf_token)
predict_fns = [endpoint._predict_resolve for endpoint in client.endpoints]
return gradio.Blocks.from_config(client.config, predict_fns, client.src)
def from_spaces_interface(
model_name: str,
config: dict,
alias: str | None,
hf_token: str | None,
iframe_url: str,
**kwargs,
) -> Interface:
config = streamline_spaces_interface(config)
api_url = f"{iframe_url}/api/predict/"
headers = {"Content-Type": "application/json"}
if hf_token is not None:
headers["Authorization"] = f"Bearer {hf_token}"
# The function should call the API with preprocessed data
def fn(*data):
data = json.dumps({"data": data})
response = requests.post(api_url, headers=headers, data=data)
result = json.loads(response.content.decode("utf-8"))
if "error" in result and "429" in result["error"]:
raise TooManyRequestsError("Too many requests to the Hugging Face API")
try:
output = result["data"]
except KeyError as ke:
raise KeyError(
f"Could not find 'data' key in response from external Space. Response received: {result}"
) from ke
if (
len(config["outputs"]) == 1
): # if the fn is supposed to return a single value, pop it
output = output[0]
if len(config["outputs"]) == 1 and isinstance(
output, list
): # Needed to support Output.Image() returning bounding boxes as well (TODO: handle different versions of gradio since they have slightly different APIs)
output = output[0]
return output
fn.__name__ = alias if (alias is not None) else model_name
config["fn"] = fn
kwargs = dict(config, **kwargs)
kwargs["_api_mode"] = True
interface = gradio.Interface(**kwargs)
return interface
|