File size: 16,090 Bytes
870ab6b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 |
"""Contains all of the events that can be triggered in a gr.Blocks() app, with the exception
of the on-page-load event, which is defined in gr.Blocks().load()."""
from __future__ import annotations
from functools import wraps
from typing import TYPE_CHECKING, Any, Callable, Literal, Sequence
from gradio_client.documentation import document, set_documentation_group
from gradio.blocks import Block
from gradio.deprecation import warn_deprecation
from gradio.helpers import EventData
from gradio.utils import get_cancel_function
if TYPE_CHECKING: # Only import for type checking (is False at runtime).
from gradio.components import Component
set_documentation_group("events")
def set_cancel_events(
block: Block, event_name: str, cancels: None | dict[str, Any] | list[dict[str, Any]]
):
if cancels:
if not isinstance(cancels, list):
cancels = [cancels]
cancel_fn, fn_indices_to_cancel = get_cancel_function(cancels)
block.set_event_trigger(
event_name,
cancel_fn,
inputs=None,
outputs=None,
queue=False,
preprocess=False,
cancels=fn_indices_to_cancel,
)
class EventListener(Block):
def __init__(self: Any):
for event_listener_class in EventListener.__subclasses__():
if isinstance(self, event_listener_class):
event_listener_class.__init__(self)
class Dependency(dict):
def __init__(self, trigger, key_vals, dep_index, fn):
super().__init__(key_vals)
self.fn = fn
self.trigger = trigger
self.then = EventListenerMethod(
self.trigger,
"then",
trigger_after=dep_index,
trigger_only_on_success=False,
)
"""
Triggered after directly preceding event is completed, regardless of success or failure.
"""
self.success = EventListenerMethod(
self.trigger,
"success",
trigger_after=dep_index,
trigger_only_on_success=True,
)
"""
Triggered after directly preceding event is completed, if it was successful.
"""
def __call__(self, *args, **kwargs):
return self.fn(*args, **kwargs)
class EventListenerMethod:
"""
Triggered on an event deployment.
"""
def __init__(
self,
trigger: Block,
event_name: str,
show_progress: Literal["full", "minimal", "hidden"] = "full",
callback: Callable | None = None,
trigger_after: int | None = None,
trigger_only_on_success: bool = False,
):
self.trigger = trigger
self.event_name = event_name
self.show_progress = show_progress
self.callback = callback
self.trigger_after = trigger_after
self.trigger_only_on_success = trigger_only_on_success
def __call__(
self,
fn: Callable | None | Literal["decorator"] = "decorator",
inputs: Component | Sequence[Component] | set[Component] | None = None,
outputs: Component | Sequence[Component] | None = None,
api_name: str | None | Literal[False] = None,
status_tracker: None = None,
scroll_to_output: bool = False,
show_progress: Literal["full", "minimal", "hidden"] | None = None,
queue: bool | None = None,
batch: bool = False,
max_batch_size: int = 4,
preprocess: bool = True,
postprocess: bool = True,
cancels: dict[str, Any] | list[dict[str, Any]] | None = None,
every: float | None = None,
_js: str | None = None,
) -> Dependency:
"""
Parameters:
fn: the function to call when this event is triggered. Often a machine learning model's prediction function. Each parameter of the function corresponds to one input component, and the function should return a single value or a tuple of values, with each element in the tuple corresponding to one output component.
inputs: List of gradio.components to use as inputs. If the function takes no inputs, this should be an empty list.
outputs: List of gradio.components to use as outputs. If the function returns no outputs, this should be an empty list.
api_name: Defines how the endpoint appears in the API docs. Can be a string, None, or False. If False, the endpoint will not be exposed in the api docs. If set to None, the endpoint will be exposed in the api docs as an unnamed endpoint, although this behavior will be changed in Gradio 4.0. If set to a string, the endpoint will be exposed in the api docs with the given name.
status_tracker: Deprecated and has no effect.
scroll_to_output: If True, will scroll to output component on completion
show_progress: If True, will show progress animation while pending
queue: If True, will place the request on the queue, if the queue has been enabled. If False, will not put this event on the queue, even if the queue has been enabled. If None, will use the queue setting of the gradio app.
batch: If True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length `max_batch_size`). The function is then *required* to return a tuple of lists (even if there is only 1 output component), with each list in the tuple corresponding to one output component.
max_batch_size: Maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True)
preprocess: If False, will not run preprocessing of component data before running 'fn' (e.g. leaving it as a base64 string if this method is called with the `Image` component).
postprocess: If False, will not run postprocessing of component data before returning 'fn' output to the browser.
cancels: A list of other events to cancel when this listener is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method. Functions that have not yet run (or generators that are iterating) will be cancelled, but functions that are currently running will be allowed to finish.
every: Run this event 'every' number of seconds while the client connection is open. Interpreted in seconds. Queue must be enabled.
"""
if fn == "decorator":
def wrapper(func):
self.__call__(
func,
inputs,
outputs,
api_name,
status_tracker,
scroll_to_output,
show_progress,
queue,
batch,
max_batch_size,
preprocess,
postprocess,
cancels,
every,
_js,
)
@wraps(func)
def inner(*args, **kwargs):
return func(*args, **kwargs)
return inner
return Dependency(None, {}, None, wrapper)
if status_tracker:
warn_deprecation(
"The 'status_tracker' parameter has been deprecated and has no effect."
)
if self.event_name == "stop":
warn_deprecation(
"The `stop` event on Video and Audio has been deprecated and will be remove in a future version. Use `ended` instead."
)
if isinstance(self, Streamable):
self.check_streamable()
if isinstance(show_progress, bool):
show_progress = "full" if show_progress else "hidden"
dep, dep_index = self.trigger.set_event_trigger(
self.event_name,
fn,
inputs,
outputs,
preprocess=preprocess,
postprocess=postprocess,
scroll_to_output=scroll_to_output,
show_progress=show_progress
if show_progress is not None
else self.show_progress,
api_name=api_name,
js=_js,
queue=queue,
batch=batch,
max_batch_size=max_batch_size,
every=every,
trigger_after=self.trigger_after,
trigger_only_on_success=self.trigger_only_on_success,
)
set_cancel_events(self.trigger, self.event_name, cancels)
if self.callback:
self.callback()
return Dependency(self.trigger, dep, dep_index, fn)
@document("*change", inherit=True)
class Changeable(EventListener):
def __init__(self):
self.change = EventListenerMethod(self, "change")
"""
This listener is triggered when the component's value changes either because of user input (e.g. a user types in a textbox) OR because of a function update (e.g. an image receives a value from the output of an event trigger).
See `.input()` for a listener that is only triggered by user input.
"""
@document("*input", inherit=True)
class Inputable(EventListener):
def __init__(self):
self.input = EventListenerMethod(self, "input")
"""
This listener is triggered when the user changes the value of the component.
"""
@document("*click", inherit=True)
class Clickable(EventListener):
def __init__(self):
self.click = EventListenerMethod(self, "click")
"""
This listener is triggered when the component (e.g. a button) is clicked.
"""
@document("*submit", inherit=True)
class Submittable(EventListener):
def __init__(self):
self.submit = EventListenerMethod(self, "submit")
"""
This listener is triggered when the user presses the Enter key while the component (e.g. a textbox) is focused.
"""
@document("*edit", inherit=True)
class Editable(EventListener):
def __init__(self):
self.edit = EventListenerMethod(self, "edit")
"""
This listener is triggered when the user edits the component (e.g. image) using the
built-in editor.
"""
@document("*clear", inherit=True)
class Clearable(EventListener):
def __init__(self):
self.clear = EventListenerMethod(self, "clear")
"""
This listener is triggered when the user clears the component (e.g. image or audio)
using the X button for the component.
"""
@document("*play", "*pause", "*stop", "*end", inherit=True)
class Playable(EventListener):
def __init__(self):
self.play = EventListenerMethod(self, "play")
"""
This listener is triggered when the user plays the component (e.g. audio or video).
"""
self.pause = EventListenerMethod(self, "pause")
"""
This listener is triggered when the media stops playing for any reason (e.g. audio or video).
"""
self.stop = EventListenerMethod(self, "stop")
"""
This listener is triggered when the user reaches the end of the media track (e.g. audio or video).
"""
self.end = EventListenerMethod(self, "end")
"""
This listener is triggered when the user reaches the end of the media track (e.g. audio or video).
"""
@document("*stream", inherit=True)
class Streamable(EventListener):
def __init__(self):
self.streaming: bool
self.stream = EventListenerMethod(
self,
"stream",
show_progress="hidden",
callback=lambda: setattr(self, "streaming", True),
)
"""
This listener is triggered when the user streams the component (e.g. a live webcam
component).
"""
def check_streamable(self):
pass
class StreamableOutput(EventListener):
def __init__(self):
self.streaming: bool
def stream_output(self, y, output_id: str, first_chunk: bool) -> tuple[bytes, Any]:
raise NotImplementedError
@document("*start_recording", "*stop_recording", inherit=True)
class Recordable(EventListener):
def __init__(self):
self.start_recording = EventListenerMethod(self, "start_recording")
"""
This listener is triggered when the user starts recording with the component (e.g. audio or video).
"""
self.stop_recording = EventListenerMethod(self, "stop_recording")
"""
This listener is triggered when the user stops recording with the component (e.g. audio or video).
"""
@document("*focus", "*blur", inherit=True)
class Focusable(EventListener):
def __init__(self):
self.focus = EventListenerMethod(self, "focus")
"""
This listener is triggered when the component is focused (e.g. when the user clicks inside a textbox).
"""
self.blur = EventListenerMethod(self, "blur")
"""
This listener is triggered when the component's is unfocused/blurred (e.g. when the user clicks outside of a textbox).
"""
@document("*upload", inherit=True)
class Uploadable(EventListener):
def __init__(self):
self.upload = EventListenerMethod(self, "upload")
"""
This listener is triggered when the user uploads a file into the component (e.g. when the user uploads a video into a video component).
"""
@document("*release", inherit=True)
class Releaseable(EventListener):
def __init__(self):
self.release = EventListenerMethod(self, "release")
"""
This listener is triggered when the user releases the mouse on this component (e.g. when the user releases the slider).
"""
@document("*select", inherit=True)
class Selectable(EventListener):
def __init__(self):
self.selectable: bool = False
self.select = EventListenerMethod(
self, "select", callback=lambda: setattr(self, "selectable", True)
)
"""
This listener is triggered when the user selects from within the Component.
This event has EventData of type gradio.SelectData that carries information, accessible through SelectData.index and SelectData.value.
See EventData documentation on how to use this event data.
"""
class SelectData(EventData):
def __init__(self, target: Block | None, data: Any):
super().__init__(target, data)
self.index: int | tuple[int, int] = data["index"]
"""
The index of the selected item. Is a tuple if the component is two dimensional or selection is a range.
"""
self.value: Any = data["value"]
"""
The value of the selected item.
"""
self.selected: bool = data.get("selected", True)
"""
True if the item was selected, False if deselected.
"""
@document("*like", inherit=True)
class Likeable(EventListener):
def __init__(self):
self.likeable: bool = False
self.like = EventListenerMethod(
self, "like", callback=lambda: setattr(self, "likeable", True)
)
"""
This listener is triggered when the user likes/dislikes from within the Component.
This event has EventData of type gradio.LikeData that carries information, accessible through LikeData.index and LikeData.value.
See EventData documentation on how to use this event data.
"""
class LikeData(EventData):
def __init__(self, target: Block | None, data: Any):
super().__init__(target, data)
self.index: int | tuple[int, int] = data["index"]
"""
The index of the liked/disliked item. Is a tuple if the component is two dimensional.
"""
self.value: Any = data["value"]
"""
The value of the liked/disliked item.
"""
self.liked: bool = data.get("liked", True)
"""
True if the item was liked, False if disliked.
"""
|