File size: 11,861 Bytes
870ab6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
"""gr.Textbox() component."""

from __future__ import annotations

from typing import Callable, Literal

import numpy as np
from gradio_client.documentation import document, set_documentation_group
from gradio_client.serializing import StringSerializable

from gradio.components.base import (
    FormComponent,
    IOComponent,
    _Keywords,
)
from gradio.deprecation import warn_style_method_deprecation
from gradio.events import (
    Changeable,
    EventListenerMethod,
    Focusable,
    Inputable,
    Selectable,
    Submittable,
)
from gradio.interpretation import TokenInterpretable

set_documentation_group("component")


@document()
class Textbox(
    FormComponent,
    Changeable,
    Inputable,
    Selectable,
    Submittable,
    Focusable,
    IOComponent,
    StringSerializable,
    TokenInterpretable,
):
    """
    Creates a textarea for user to enter string input or display string output.
    Preprocessing: passes textarea value as a {str} into the function.
    Postprocessing: expects a {str} returned from function and sets textarea value to it.
    Examples-format: a {str} representing the textbox input.

    Demos: hello_world, diff_texts, sentence_builder
    Guides: creating-a-chatbot, real-time-speech-recognition
    """

    def __init__(
        self,
        value: str | Callable | None = "",
        *,
        lines: int = 1,
        max_lines: int = 20,
        placeholder: str | None = None,
        label: str | None = None,
        info: str | None = None,
        every: float | None = None,
        show_label: bool | None = None,
        container: bool = True,
        scale: int | None = None,
        min_width: int = 160,
        interactive: bool | None = None,
        visible: bool = True,
        elem_id: str | None = None,
        autofocus: bool = False,
        autoscroll: bool = True,
        elem_classes: list[str] | str | None = None,
        type: Literal["text", "password", "email"] = "text",
        text_align: Literal["left", "right"] | None = None,
        rtl: bool = False,
        show_copy_button: bool = False,
        **kwargs,
    ):
        """
        Parameters:
            value: default text to provide in textarea. If callable, the function will be called whenever the app loads to set the initial value of the component.
            lines: minimum number of line rows to provide in textarea.
            max_lines: maximum number of line rows to provide in textarea.
            placeholder: placeholder hint to provide behind textarea.
            label: component name in interface.
            info: additional component description.
            every: If `value` is a callable, run the function 'every' number of seconds while the client connection is open. Has no effect otherwise. Queue must be enabled. The event can be accessed (e.g. to cancel it) via this component's .load_event attribute.
            show_label: if True, will display label.
            container: If True, will place the component in a container - providing some extra padding around the border.
            scale: relative width compared to adjacent Components in a Row. For example, if Component A has scale=2, and Component B has scale=1, A will be twice as wide as B. Should be an integer.
            min_width: minimum pixel width, will wrap if not sufficient screen space to satisfy this value. If a certain scale value results in this Component being narrower than min_width, the min_width parameter will be respected first.
            interactive: if True, will be rendered as an editable textbox; if False, editing will be disabled. If not provided, this is inferred based on whether the component is used as an input or output.
            visible: If False, component will be hidden.
            autofocus: If True, will focus on the textbox when the page loads.
            elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles.
            elem_classes: An optional list of strings that are assigned as the classes of this component in the HTML DOM. Can be used for targeting CSS styles.
            type: The type of textbox. One of: 'text', 'password', 'email', Default is 'text'.
            text_align: How to align the text in the textbox, can be: "left", "right", or None (default). If None, the alignment is left if `rtl` is False, or right if `rtl` is True. Can only be changed if `type` is "text".
            rtl: If True and `type` is "text", sets the direction of the text to right-to-left (cursor appears on the left of the text). Default is False, which renders cursor on the right.
            show_copy_button: If True, includes a copy button to copy the text in the textbox. Only applies if show_label is True.
            autoscroll: If True, will automatically scroll to the bottom of the textbox when the value changes.
        """
        if type not in ["text", "password", "email"]:
            raise ValueError('`type` must be one of "text", "password", or "email".')

        self.lines = lines
        if type == "text":
            self.max_lines = max(lines, max_lines)
        else:
            self.max_lines = 1
        self.placeholder = placeholder
        self.show_copy_button = show_copy_button
        self.autofocus = autofocus
        self.select: EventListenerMethod
        self.autoscroll = autoscroll
        """
        Event listener for when the user selects text in the Textbox.
        Uses event data gradio.SelectData to carry `value` referring to selected substring, and `index` tuple referring to selected range endpoints.
        See EventData documentation on how to use this event data.
        """
        IOComponent.__init__(
            self,
            label=label,
            info=info,
            every=every,
            show_label=show_label,
            container=container,
            scale=scale,
            min_width=min_width,
            interactive=interactive,
            visible=visible,
            elem_id=elem_id,
            elem_classes=elem_classes,
            value=value,
            **kwargs,
        )
        TokenInterpretable.__init__(self)
        self.type = type
        self.rtl = rtl
        self.text_align = text_align

    def get_config(self):
        return {
            "lines": self.lines,
            "max_lines": self.max_lines,
            "placeholder": self.placeholder,
            "value": self.value,
            "type": self.type,
            "autofocus": self.autofocus,
            "show_copy_button": self.show_copy_button,
            "container": self.container,
            "text_align": self.text_align,
            "rtl": self.rtl,
            "autoscroll": self.autoscroll,
            **IOComponent.get_config(self),
        }

    @staticmethod
    def update(
        value: str | Literal[_Keywords.NO_VALUE] | None = _Keywords.NO_VALUE,
        lines: int | None = None,
        max_lines: int | None = None,
        placeholder: str | None = None,
        label: str | None = None,
        info: str | None = None,
        show_label: bool | None = None,
        container: bool | None = None,
        scale: int | None = None,
        min_width: int | None = None,
        visible: bool | None = None,
        interactive: bool | None = None,
        type: Literal["text", "password", "email"] | None = None,
        text_align: Literal["left", "right"] | None = None,
        rtl: bool | None = None,
        show_copy_button: bool | None = None,
        autofocus: bool | None = None,
        autoscroll: bool | None = None,
    ):
        return {
            "lines": lines,
            "max_lines": max_lines,
            "placeholder": placeholder,
            "label": label,
            "info": info,
            "show_label": show_label,
            "container": container,
            "scale": scale,
            "min_width": min_width,
            "visible": visible,
            "value": value,
            "type": type,
            "interactive": interactive,
            "show_copy_button": show_copy_button,
            "autofocus": autofocus,
            "text_align": text_align,
            "rtl": rtl,
            "autoscroll": autoscroll,
            "__type__": "update",
        }

    def preprocess(self, x: str | None) -> str | None:
        """
        Preprocesses input (converts it to a string) before passing it to the function.
        Parameters:
            x: text
        Returns:
            text
        """
        return None if x is None else str(x)

    def postprocess(self, y: str | None) -> str | None:
        """
        Postproccess the function output y by converting it to a str before passing it to the frontend.
        Parameters:
            y: function output to postprocess.
        Returns:
            text
        """
        return None if y is None else str(y)

    def set_interpret_parameters(
        self, separator: str = " ", replacement: str | None = None
    ):
        """
        Calculates interpretation score of characters in input by splitting input into tokens, then using a "leave one out" method to calculate the score of each token by removing each token and measuring the delta of the output value.
        Parameters:
            separator: Separator to use to split input into tokens.
            replacement: In the "leave one out" step, the text that the token should be replaced with. If None, the token is removed altogether.
        """
        self.interpretation_separator = separator
        self.interpretation_replacement = replacement
        return self

    def tokenize(self, x: str) -> tuple[list[str], list[str], None]:
        """
        Tokenizes an input string by dividing into "words" delimited by self.interpretation_separator
        """
        tokens = x.split(self.interpretation_separator)
        leave_one_out_strings = []
        for index in range(len(tokens)):
            leave_one_out_set = list(tokens)
            if self.interpretation_replacement is None:
                leave_one_out_set.pop(index)
            else:
                leave_one_out_set[index] = self.interpretation_replacement
            leave_one_out_strings.append(
                self.interpretation_separator.join(leave_one_out_set)
            )
        return tokens, leave_one_out_strings, None

    def get_masked_inputs(
        self, tokens: list[str], binary_mask_matrix: list[list[int]]
    ) -> list[str]:
        """
        Constructs partially-masked sentences for SHAP interpretation
        """
        masked_inputs = []
        for binary_mask_vector in binary_mask_matrix:
            masked_input = np.array(tokens)[np.array(binary_mask_vector, dtype=bool)]
            masked_inputs.append(self.interpretation_separator.join(masked_input))
        return masked_inputs

    def get_interpretation_scores(
        self, x, neighbors, scores: list[float], tokens: list[str], masks=None, **kwargs
    ) -> list[tuple[str, float]]:
        """
        Returns:
            Each tuple set represents a set of characters and their corresponding interpretation score.
        """
        result = []
        for token, score in zip(tokens, scores):
            result.append((token, score))
            result.append((self.interpretation_separator, 0))
        return result

    def style(
        self,
        *,
        show_copy_button: bool | None = None,
        container: bool | None = None,
        **kwargs,
    ):
        """
        This method is deprecated. Please set these arguments in the constructor instead.
        """
        warn_style_method_deprecation()
        if show_copy_button is not None:
            self.show_copy_button = show_copy_button
        if container is not None:
            self.container = container
        return self