File size: 5,943 Bytes
870ab6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
"""gr.Dataset() component."""

from __future__ import annotations

from typing import Any, Literal

from gradio_client.documentation import document, set_documentation_group
from gradio_client.serializing import StringSerializable

from gradio.components.base import (
    Component,
    IOComponent,
    _Keywords,
    get_component_instance,
)
from gradio.events import Clickable, Selectable

set_documentation_group("component")


@document()
class Dataset(Clickable, Selectable, Component, StringSerializable):
    """
    Used to create an output widget for showing datasets. Used to render the examples
    box.
    Preprocessing: passes the selected sample either as a {list} of data (if type="value") or as an {int} index (if type="index")
    Postprocessing: expects a {list} of {lists} corresponding to the dataset data.
    """

    def __init__(
        self,
        *,
        label: str | None = None,
        components: list[IOComponent] | list[str],
        samples: list[list[Any]] | None = None,
        headers: list[str] | None = None,
        type: Literal["values", "index"] = "values",
        samples_per_page: int = 10,
        visible: bool = True,
        elem_id: str | None = None,
        elem_classes: list[str] | str | None = None,
        container: bool = True,
        scale: int | None = None,
        min_width: int = 160,
        **kwargs,
    ):
        """
        Parameters:
            components: Which component types to show in this dataset widget, can be passed in as a list of string names or Components instances. The following components are supported in a Dataset: Audio, Checkbox, CheckboxGroup, ColorPicker, Dataframe, Dropdown, File, HTML, Image, Markdown, Model3D, Number, Radio, Slider, Textbox, TimeSeries, Video
            samples: a nested list of samples. Each sublist within the outer list represents a data sample, and each element within the sublist represents an value for each component
            headers: Column headers in the Dataset widget, should be the same len as components. If not provided, inferred from component labels
            type: 'values' if clicking on a sample should pass the value of the sample, or "index" if it should pass the index of the sample
            samples_per_page: how many examples to show per page.
            visible: If False, component will be hidden.
            elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles.
            elem_classes: An optional list of strings that are assigned as the classes of this component in the HTML DOM. Can be used for targeting CSS styles.
            container: If True, will place the component in a container - providing some extra padding around the border.
            scale: relative width compared to adjacent Components in a Row. For example, if Component A has scale=2, and Component B has scale=1, A will be twice as wide as B. Should be an integer.
            min_width: minimum pixel width, will wrap if not sufficient screen space to satisfy this value. If a certain scale value results in this Component being narrower than min_width, the min_width parameter will be respected first.
        """
        Component.__init__(
            self, visible=visible, elem_id=elem_id, elem_classes=elem_classes, **kwargs
        )
        self.container = container
        self.scale = scale
        self.min_width = min_width
        self.components = [get_component_instance(c) for c in components]

        # Narrow type to IOComponent
        assert all(
            isinstance(c, IOComponent) for c in self.components
        ), "All components in a `Dataset` must be subclasses of `IOComponent`"
        self.components = [c for c in self.components if isinstance(c, IOComponent)]
        for component in self.components:
            component.root_url = self.root_url

        self.samples = [[]] if samples is None else samples
        for example in self.samples:
            for i, (component, ex) in enumerate(zip(self.components, example)):
                example[i] = component.as_example(ex)
        self.type = type
        self.label = label
        if headers is not None:
            self.headers = headers
        elif all(c.label is None for c in self.components):
            self.headers = []
        else:
            self.headers = [c.label or "" for c in self.components]
        self.samples_per_page = samples_per_page

    def get_config(self):
        return {
            "components": [component.get_block_name() for component in self.components],
            "headers": self.headers,
            "samples": self.samples,
            "type": self.type,
            "label": self.label,
            "samples_per_page": self.samples_per_page,
            "container": self.container,
            "scale": self.scale,
            "min_width": self.min_width,
            **Component.get_config(self),
        }

    @staticmethod
    def update(
        samples: Any | Literal[_Keywords.NO_VALUE] | None = _Keywords.NO_VALUE,
        visible: bool | None = None,
        label: str | None = None,
        container: bool | None = None,
        scale: int | None = None,
        min_width: int | None = None,
    ):
        return {
            "samples": samples,
            "visible": visible,
            "label": label,
            "container": container,
            "scale": scale,
            "min_width": min_width,
            "__type__": "update",
        }

    def preprocess(self, x: Any) -> Any:
        """
        Any preprocessing needed to be performed on function input.
        """
        if self.type == "index":
            return x
        elif self.type == "values":
            return self.samples[x]

    def postprocess(self, samples: list[list[Any]]) -> dict:
        return {
            "samples": samples,
            "__type__": "update",
        }