File size: 14,352 Bytes
870ab6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
from __future__ import annotations

import logging
import json
import commentjson as cjson
import requests

import colorama


from ..presets import *
from ..index_func import *
from ..utils import *
from .. import shared
from ..config import retrieve_proxy, usage_limit
from modules import config
from .base_model import BaseLLMModel, ModelType


class OpenAIClient(BaseLLMModel):
    def __init__(
        self,
        model_name,
        api_key,
        system_prompt=INITIAL_SYSTEM_PROMPT,
        temperature=1.0,
        top_p=1.0,
        user_name=""
    ) -> None:
        super().__init__(
            model_name=model_name,
            temperature=temperature,
            top_p=top_p,
            system_prompt=system_prompt,
            user=user_name
        )
        with open("config.json", "r") as f:
            self.configuration_json = cjson.load(f)
        self.api_key = api_key
        self.need_api_key = True
        self._refresh_header()

    def get_answer_stream_iter(self):
        response = self._get_response(stream=True)
        if response is not None:
            iter = self._decode_chat_response(response)
            partial_text = ""
            for i in iter:
                partial_text += i
                yield partial_text
        else:
            yield STANDARD_ERROR_MSG + GENERAL_ERROR_MSG


    def get_answer_at_once(self):
        response = self._get_response()
        response = json.loads(response.text)
        content = response["choices"][0]["message"]["content"]
        total_token_count = response["usage"]["total_tokens"]
        return content, total_token_count

    def count_token(self, user_input):
        input_token_count = count_token(construct_user(user_input))
        if self.system_prompt is not None and len(self.all_token_counts) == 0:
            system_prompt_token_count = count_token(
                construct_system(self.system_prompt)
            )
            return input_token_count + system_prompt_token_count
        return input_token_count

    def billing_info(self):
        try:
            curr_time = datetime.datetime.now()
            last_day_of_month = get_last_day_of_month(
                curr_time).strftime("%Y-%m-%d")
            first_day_of_month = curr_time.replace(day=1).strftime("%Y-%m-%d")
            usage_url = f"{shared.state.usage_api_url}?start_date={first_day_of_month}&end_date={last_day_of_month}"
            try:
                usage_data = self._get_billing_data(usage_url)
            except Exception as e:
                None
            rounded_usage = round(usage_data["total_usage"] / 100, 5)
            usage_percent = round(usage_data["total_usage"] / usage_limit, 2)
            return get_html("billing_info.html").format(
                    label = "Ежемесячное использование",
                    usage_percent = usage_percent,
                    rounded_usage = rounded_usage,
                    usage_limit = usage_limit
                )
        except requests.exceptions.ConnectTimeout:
            None
        except requests.exceptions.ReadTimeout:
            None
        except Exception as e:
            None

    def set_token_upper_limit(self, new_upper_limit):
        pass

    @shared.state.switching_api_key  # 在不开启多账号模式的时候,这个装饰器不会起作用
    def _get_response(self, stream=False):
        headers = self._get_headers()
        history = self._get_history()
        payload = self._get_payload(history, stream)
        shared.state.completion_url = self._get_api_url()
        logging.info(f"Используется API URL: {shared.state.completion_url}")
        with retrieve_proxy():
            response = self._make_request(headers, payload, stream)
        return response

    def _get_api_url(self):
        if "naga-gpt" in self.model_name or "naga-llama" in self.model_name or "naga-claude" in self.model_name: 
            url = "https://api.naga.ac/v1/chat/completions"
        elif "naga-text" in self.model_name:
            url = "https://api.naga.ac/v1/completions"
        elif "chatty" in self.model_name:
            url = "https://chattyapi.tech/v1/chat/completions"
        elif "daku" in self.model_name:
            url = "https://api.daku.tech/v1/chat/completions"
        elif "neuro" in self.model_name:
            url = "https://neuroapi.host/v1/chat/completions"
        else:
            url = "http://127.0.0.1:1337/v1/chat/completions"
        return url
      
    def _get_headers(self):
        if self.model_name == "purgpt":
            purgpt_api_key = self.configuration_json["purgpt_api_key"]
            headers = {
                'Content-Type': 'application/json',
                'Authorization': f'Bearer {purgpt_api_key}',
            }
        elif "chatty" in self.model_name:
            chatty_api_key = self.configuration_json["chatty_api_key"]
            headers = {
                "Content-Type": "application/json",
                "Authorization": f"Bearer {chatty_api_key}",
            }
        elif "daku" in self.model_name:
            daku_api_key = self.configuration_json["daku_api_key"]
            headers = {
                "Content-Type": "application/json",
                "Authorization": f"Bearer {daku_api_key}",
            }
        else:
            headers = {
                "Content-Type": "application/json",
                "Authorization": f"Bearer {self.api_key}",
            }
        return headers
         
    def _get_history(self):
        system_prompt = self.system_prompt
        history = self.history
        logging.debug(colorama.Fore.YELLOW + f"{history}" + colorama.Fore.RESET)
        if system_prompt is not None:
            history = [construct_system(system_prompt), *history]
        return history

    def _get_payload(self, history, stream): 
        model = self.model_name.replace("naga-", "").replace("chatty-", "").replace("neuro-", "").replace("daku-", "")
        if "naga-text" in self.model_name:
            last_msg = self.history[-1]
            last_user_input = last_msg["role"] == "user"
            if last_user_input:
                last_text = last_msg["content"]
            payload = {
                "model": model,
                "prompt": last_text,
                "stream": stream,
            }
            return payload
        else:
            payload = {
                "model": model,
                "messages": history,
                "temperature": self.temperature,
                "top_p": self.top_p,
                "n": self.n_choices,
                "stream": stream,
                "presence_penalty": self.presence_penalty,
                "frequency_penalty": self.frequency_penalty,
            }
            if self.max_generation_token is not None:
                payload["max_tokens"] = self.max_generation_token
            if self.stop_sequence is not None:
                payload["stop"] = self.stop_sequence
            if self.logit_bias is not None:
                payload["logit_bias"] = self.logit_bias
            if self.user_identifier:
                payload["user"] = self.user_identifier
            return payload

    def _make_request(self, headers, payload, stream):
        if stream:
            timeout = TIMEOUT_STREAMING
        else:
            timeout = TIMEOUT_ALL
        try: #Заготовочка для переписания системы отправки запросов
            if any(substring in self.model_name for substring in ["purgpt", "naga", "chatty"]):
                response = requests.post(
                    shared.state.completion_url,
                    headers = headers,
                    json=payload,
                    stream=stream,
                )
            else:
                response = requests.post(
                    shared.state.completion_url,
                    headers=headers,
                    json=payload,
                    stream=stream,
                    timeout=timeout,
                )
        except:
            return None
        return response

    def _refresh_header(self):
        self.headers = {
            "Content-Type": "application/json",
            "Authorization": f"Bearer {self.api_key}",
        }

    def _get_billing_data(self, billing_url):
        with retrieve_proxy():
            response = requests.get(
                billing_url,
                headers=self.headers,
                timeout=TIMEOUT_ALL,
            )
        if response.status_code == 200:
            data = response.json()
            return data
        else:
            raise Exception(f"API request failed with status code {response.status_code}: {response.text}")

    def _decode_chat_response(self, response):
        error_msg = ""
        for chunk in response.iter_lines():
            if chunk:
                chunk = chunk.decode()
                chunk_length = len(chunk)
                try:
                    chunk = json.loads(chunk[6:])
                except json.JSONDecodeError:
                    error_msg += chunk
                    continue
                if chunk_length > 6 and "delta" in chunk["choices"][0]:
                    if chunk["choices"][0]["finish_reason"] == "stop":
                        break
                    try:
                        yield chunk["choices"][0]["delta"]["content"]
                    except Exception as e:
                        continue
        if error_msg: 
            if "Not authenticated" in error_msg:
                yield '<span style="color: red;">Провайдер API ответил ошибкой:</span> Ключ ChimeraAPI не обнаружен. Убедитесь что ввели его.'
            elif "Invalid API key" in error_msg:
                yield '<span style="color: red;">Провайдер API ответил ошибкой:</span> Неверный ключ ChimeraAPI. Возможно вы ввели его неправильно либо он деактивирован. Вы можете сгенерировать его заново в Discord: https://discord.gg/chimeragpt'
            elif "Reverse engineered site does not respond" in error_msg:
                yield '<span style="color: red;">Провайдер API ответил ошибкой: На данный момент, все сайты-провайдеры недоступны. Попробуйте позже.'
            elif "one_api_error" in error_msg:
                yield '<span style="color: red;">Провайдер API ответил ошибкой:</span> Сервер Chatty API недоступен. Попробуйте позднее.'
            else:
                yield '<span style="color: red;">Ошибка:</span> ' + error_msg

    def set_key(self, new_access_key):
        ret = super().set_key(new_access_key)
        self._refresh_header()
        return ret

def get_model(
    model_name,
    lora_model_path=None,
    access_key=None,
    temperature=None,
    top_p=None,
    system_prompt=None,
    user_name=""
) -> BaseLLMModel:
    msg = "Модель установлена на: " + f" {model_name}"
    model_type = ModelType.get_type(model_name)
    lora_selector_visibility = False
    lora_choices = []
    dont_change_lora_selector = False
    if model_type != ModelType.OpenAI:
        config.local_embedding = True
    # del current_model.model
    model = None
    chatbot = gr.Chatbot.update(label=model_name)
    try:
        if model_type == ModelType.OpenAI:
            logging.info(f"Загрузка модели OpenAI: {model_name}")
            model = OpenAIClient(
                model_name=model_name,
                api_key=access_key,
                system_prompt=system_prompt,
                temperature=temperature,
                top_p=top_p,
                user_name=user_name,
            )
        elif model_type == ModelType.Unknown:
            logging.info(f"正在加载OpenAI模型: {model_name}")
            model = OpenAIClient(
                model_name=model_name,
                api_key=access_key,
                system_prompt=system_prompt,
                temperature=temperature,
                top_p=top_p,
                user_name=user_name,
            )
        logging.info(msg)
    except Exception as e:
        import traceback
        traceback.print_exc()
        msg = f"{STANDARD_ERROR_MSG}: {e}"
    if dont_change_lora_selector:
        return model, msg, chatbot
    else:
        return model, msg, chatbot, gr.Dropdown.update(choices=lora_choices, visible=lora_selector_visibility)


if __name__ == "__main__":
    with open("config.json", "r") as f:
        openai_api_key = cjson.load(f)["openai_api_key"]
    # set logging level to debug
    logging.basicConfig(level=logging.DEBUG)
    # client = ModelManager(model_name="gpt-3.5-turbo", access_key=openai_api_key)
    client = get_model(model_name="chatglm-6b-int4")
    chatbot = []
    stream = False
    # 测试账单功能
    logging.info(colorama.Back.GREEN + "测试账单功能" + colorama.Back.RESET)
    logging.info(client.billing_info())
    # 测试问答
    logging.info(colorama.Back.GREEN + "测试问答" + colorama.Back.RESET)
    question = "巴黎是中国的首都吗?"
    for i in client.predict(inputs=question, chatbot=chatbot, stream=stream):
        logging.info(i)
    logging.info(f"测试问答后history : {client.history}")
    # 测试记忆力
    logging.info(colorama.Back.GREEN + "测试记忆力" + colorama.Back.RESET)
    question = "我刚刚问了你什么问题?"
    for i in client.predict(inputs=question, chatbot=chatbot, stream=stream):
        logging.info(i)
    logging.info(f"测试记忆力后history : {client.history}")
    # 测试重试功能
    logging.info(colorama.Back.GREEN + "测试重试功能" + colorama.Back.RESET)
    for i in client.retry(chatbot=chatbot, stream=stream):
        logging.info(i)
    logging.info(f"重试后history : {client.history}")
    # # 测试总结功能
    # print(colorama.Back.GREEN + "测试总结功能" + colorama.Back.RESET)
    # chatbot, msg = client.reduce_token_size(chatbot=chatbot)
    # print(chatbot, msg)
    # print(f"总结后history: {client.history}")