File size: 14,352 Bytes
870ab6b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 |
from __future__ import annotations
import logging
import json
import commentjson as cjson
import requests
import colorama
from ..presets import *
from ..index_func import *
from ..utils import *
from .. import shared
from ..config import retrieve_proxy, usage_limit
from modules import config
from .base_model import BaseLLMModel, ModelType
class OpenAIClient(BaseLLMModel):
def __init__(
self,
model_name,
api_key,
system_prompt=INITIAL_SYSTEM_PROMPT,
temperature=1.0,
top_p=1.0,
user_name=""
) -> None:
super().__init__(
model_name=model_name,
temperature=temperature,
top_p=top_p,
system_prompt=system_prompt,
user=user_name
)
with open("config.json", "r") as f:
self.configuration_json = cjson.load(f)
self.api_key = api_key
self.need_api_key = True
self._refresh_header()
def get_answer_stream_iter(self):
response = self._get_response(stream=True)
if response is not None:
iter = self._decode_chat_response(response)
partial_text = ""
for i in iter:
partial_text += i
yield partial_text
else:
yield STANDARD_ERROR_MSG + GENERAL_ERROR_MSG
def get_answer_at_once(self):
response = self._get_response()
response = json.loads(response.text)
content = response["choices"][0]["message"]["content"]
total_token_count = response["usage"]["total_tokens"]
return content, total_token_count
def count_token(self, user_input):
input_token_count = count_token(construct_user(user_input))
if self.system_prompt is not None and len(self.all_token_counts) == 0:
system_prompt_token_count = count_token(
construct_system(self.system_prompt)
)
return input_token_count + system_prompt_token_count
return input_token_count
def billing_info(self):
try:
curr_time = datetime.datetime.now()
last_day_of_month = get_last_day_of_month(
curr_time).strftime("%Y-%m-%d")
first_day_of_month = curr_time.replace(day=1).strftime("%Y-%m-%d")
usage_url = f"{shared.state.usage_api_url}?start_date={first_day_of_month}&end_date={last_day_of_month}"
try:
usage_data = self._get_billing_data(usage_url)
except Exception as e:
None
rounded_usage = round(usage_data["total_usage"] / 100, 5)
usage_percent = round(usage_data["total_usage"] / usage_limit, 2)
return get_html("billing_info.html").format(
label = "Ежемесячное использование",
usage_percent = usage_percent,
rounded_usage = rounded_usage,
usage_limit = usage_limit
)
except requests.exceptions.ConnectTimeout:
None
except requests.exceptions.ReadTimeout:
None
except Exception as e:
None
def set_token_upper_limit(self, new_upper_limit):
pass
@shared.state.switching_api_key # 在不开启多账号模式的时候,这个装饰器不会起作用
def _get_response(self, stream=False):
headers = self._get_headers()
history = self._get_history()
payload = self._get_payload(history, stream)
shared.state.completion_url = self._get_api_url()
logging.info(f"Используется API URL: {shared.state.completion_url}")
with retrieve_proxy():
response = self._make_request(headers, payload, stream)
return response
def _get_api_url(self):
if "naga-gpt" in self.model_name or "naga-llama" in self.model_name or "naga-claude" in self.model_name:
url = "https://api.naga.ac/v1/chat/completions"
elif "naga-text" in self.model_name:
url = "https://api.naga.ac/v1/completions"
elif "chatty" in self.model_name:
url = "https://chattyapi.tech/v1/chat/completions"
elif "daku" in self.model_name:
url = "https://api.daku.tech/v1/chat/completions"
elif "neuro" in self.model_name:
url = "https://neuroapi.host/v1/chat/completions"
else:
url = "http://127.0.0.1:1337/v1/chat/completions"
return url
def _get_headers(self):
if self.model_name == "purgpt":
purgpt_api_key = self.configuration_json["purgpt_api_key"]
headers = {
'Content-Type': 'application/json',
'Authorization': f'Bearer {purgpt_api_key}',
}
elif "chatty" in self.model_name:
chatty_api_key = self.configuration_json["chatty_api_key"]
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {chatty_api_key}",
}
elif "daku" in self.model_name:
daku_api_key = self.configuration_json["daku_api_key"]
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {daku_api_key}",
}
else:
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {self.api_key}",
}
return headers
def _get_history(self):
system_prompt = self.system_prompt
history = self.history
logging.debug(colorama.Fore.YELLOW + f"{history}" + colorama.Fore.RESET)
if system_prompt is not None:
history = [construct_system(system_prompt), *history]
return history
def _get_payload(self, history, stream):
model = self.model_name.replace("naga-", "").replace("chatty-", "").replace("neuro-", "").replace("daku-", "")
if "naga-text" in self.model_name:
last_msg = self.history[-1]
last_user_input = last_msg["role"] == "user"
if last_user_input:
last_text = last_msg["content"]
payload = {
"model": model,
"prompt": last_text,
"stream": stream,
}
return payload
else:
payload = {
"model": model,
"messages": history,
"temperature": self.temperature,
"top_p": self.top_p,
"n": self.n_choices,
"stream": stream,
"presence_penalty": self.presence_penalty,
"frequency_penalty": self.frequency_penalty,
}
if self.max_generation_token is not None:
payload["max_tokens"] = self.max_generation_token
if self.stop_sequence is not None:
payload["stop"] = self.stop_sequence
if self.logit_bias is not None:
payload["logit_bias"] = self.logit_bias
if self.user_identifier:
payload["user"] = self.user_identifier
return payload
def _make_request(self, headers, payload, stream):
if stream:
timeout = TIMEOUT_STREAMING
else:
timeout = TIMEOUT_ALL
try: #Заготовочка для переписания системы отправки запросов
if any(substring in self.model_name for substring in ["purgpt", "naga", "chatty"]):
response = requests.post(
shared.state.completion_url,
headers = headers,
json=payload,
stream=stream,
)
else:
response = requests.post(
shared.state.completion_url,
headers=headers,
json=payload,
stream=stream,
timeout=timeout,
)
except:
return None
return response
def _refresh_header(self):
self.headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {self.api_key}",
}
def _get_billing_data(self, billing_url):
with retrieve_proxy():
response = requests.get(
billing_url,
headers=self.headers,
timeout=TIMEOUT_ALL,
)
if response.status_code == 200:
data = response.json()
return data
else:
raise Exception(f"API request failed with status code {response.status_code}: {response.text}")
def _decode_chat_response(self, response):
error_msg = ""
for chunk in response.iter_lines():
if chunk:
chunk = chunk.decode()
chunk_length = len(chunk)
try:
chunk = json.loads(chunk[6:])
except json.JSONDecodeError:
error_msg += chunk
continue
if chunk_length > 6 and "delta" in chunk["choices"][0]:
if chunk["choices"][0]["finish_reason"] == "stop":
break
try:
yield chunk["choices"][0]["delta"]["content"]
except Exception as e:
continue
if error_msg:
if "Not authenticated" in error_msg:
yield '<span style="color: red;">Провайдер API ответил ошибкой:</span> Ключ ChimeraAPI не обнаружен. Убедитесь что ввели его.'
elif "Invalid API key" in error_msg:
yield '<span style="color: red;">Провайдер API ответил ошибкой:</span> Неверный ключ ChimeraAPI. Возможно вы ввели его неправильно либо он деактивирован. Вы можете сгенерировать его заново в Discord: https://discord.gg/chimeragpt'
elif "Reverse engineered site does not respond" in error_msg:
yield '<span style="color: red;">Провайдер API ответил ошибкой: На данный момент, все сайты-провайдеры недоступны. Попробуйте позже.'
elif "one_api_error" in error_msg:
yield '<span style="color: red;">Провайдер API ответил ошибкой:</span> Сервер Chatty API недоступен. Попробуйте позднее.'
else:
yield '<span style="color: red;">Ошибка:</span> ' + error_msg
def set_key(self, new_access_key):
ret = super().set_key(new_access_key)
self._refresh_header()
return ret
def get_model(
model_name,
lora_model_path=None,
access_key=None,
temperature=None,
top_p=None,
system_prompt=None,
user_name=""
) -> BaseLLMModel:
msg = "Модель установлена на: " + f" {model_name}"
model_type = ModelType.get_type(model_name)
lora_selector_visibility = False
lora_choices = []
dont_change_lora_selector = False
if model_type != ModelType.OpenAI:
config.local_embedding = True
# del current_model.model
model = None
chatbot = gr.Chatbot.update(label=model_name)
try:
if model_type == ModelType.OpenAI:
logging.info(f"Загрузка модели OpenAI: {model_name}")
model = OpenAIClient(
model_name=model_name,
api_key=access_key,
system_prompt=system_prompt,
temperature=temperature,
top_p=top_p,
user_name=user_name,
)
elif model_type == ModelType.Unknown:
logging.info(f"正在加载OpenAI模型: {model_name}")
model = OpenAIClient(
model_name=model_name,
api_key=access_key,
system_prompt=system_prompt,
temperature=temperature,
top_p=top_p,
user_name=user_name,
)
logging.info(msg)
except Exception as e:
import traceback
traceback.print_exc()
msg = f"{STANDARD_ERROR_MSG}: {e}"
if dont_change_lora_selector:
return model, msg, chatbot
else:
return model, msg, chatbot, gr.Dropdown.update(choices=lora_choices, visible=lora_selector_visibility)
if __name__ == "__main__":
with open("config.json", "r") as f:
openai_api_key = cjson.load(f)["openai_api_key"]
# set logging level to debug
logging.basicConfig(level=logging.DEBUG)
# client = ModelManager(model_name="gpt-3.5-turbo", access_key=openai_api_key)
client = get_model(model_name="chatglm-6b-int4")
chatbot = []
stream = False
# 测试账单功能
logging.info(colorama.Back.GREEN + "测试账单功能" + colorama.Back.RESET)
logging.info(client.billing_info())
# 测试问答
logging.info(colorama.Back.GREEN + "测试问答" + colorama.Back.RESET)
question = "巴黎是中国的首都吗?"
for i in client.predict(inputs=question, chatbot=chatbot, stream=stream):
logging.info(i)
logging.info(f"测试问答后history : {client.history}")
# 测试记忆力
logging.info(colorama.Back.GREEN + "测试记忆力" + colorama.Back.RESET)
question = "我刚刚问了你什么问题?"
for i in client.predict(inputs=question, chatbot=chatbot, stream=stream):
logging.info(i)
logging.info(f"测试记忆力后history : {client.history}")
# 测试重试功能
logging.info(colorama.Back.GREEN + "测试重试功能" + colorama.Back.RESET)
for i in client.retry(chatbot=chatbot, stream=stream):
logging.info(i)
logging.info(f"重试后history : {client.history}")
# # 测试总结功能
# print(colorama.Back.GREEN + "测试总结功能" + colorama.Back.RESET)
# chatbot, msg = client.reduce_token_size(chatbot=chatbot)
# print(chatbot, msg)
# print(f"总结后history: {client.history}")
|