File size: 11,955 Bytes
870ab6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
import os
import time
import json
import random
import string
import asyncio
import async_timeout
import aiohttp, aiofiles
import requests
import pytz
import logging
from datetime import datetime
from fastapi import FastAPI, Request
from fastapi.middleware.gzip import GZipMiddleware
from fastapi.responses import JSONResponse, StreamingResponse
from starlette.middleware.cors import CORSMiddleware
from typing import Any
import g4f
from g4f import ChatCompletion, Provider, BaseProvider
from g4f.models import ModelUtils
from cachetools import LRUCache

import aiofiles
import async_timeout

from fp.fp import FreeProxy
from embedding_processing import embedding_processing 
import concurrent.futures

app = FastAPI()
embedding_proc = embedding_processing()
LOG = logging.getLogger(__name__)

app.add_middleware(GZipMiddleware)
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_methods=["*"],
    allow_headers=["*"],
)

def get_proxy():
    proxy = FreeProxy(rand=True, timeout=1).get()
    return proxy


@app.post("/chat/completions")
@app.post("/v1/chat/completions")
async def chat_completions(request: Request):
    req_data = await request.json()
    stream = req_data.get('stream', False)
    model = req_data.get('model', 'gpt-3.5-turbo')
    messages = req_data.get('messages')
    temperature = req_data.get('temperature', 1.0)
    top_p = req_data.get('top_p', 1.0)
    max_tokens = req_data.get('max_tokens', 4096)

    response = ChatCompletion.create(model=model, stream=stream, messages=messages, temperature=temperature, top_p=top_p, max_tokens=max_tokens, system_prompt="")

    completion_id = "".join(random.choices(string.ascii_letters + string.digits, k=28))
    completion_timestamp = int(time.time())

    if not stream:
        return {
            "id": f"chatcmpl-{completion_id}",
            "object": "chat.completion",
            "created": completion_timestamp,
            "model": model,
            "choices": [
                {
                    "index": 0,
                    "message": {
                        "role": "assistant",
                        "content": response,
                    },
                    "finish_reason": "stop",
                }
            ],
            "usage": {
                "prompt_tokens": None,
                "completion_tokens": None,
                "total_tokens": None,
            },
        }

    def streaming():
        for chunk in response:
            completion_data = {
                "id": f"chatcmpl-{completion_id}",
                "object": "chat.completion.chunk",
                "created": completion_timestamp,
                "model": model,
                "choices": [
                    {
                        "index": 0,
                        "delta": {
                            "content": chunk,
                        },
                        "finish_reason": None,
                    }
                ],
            }
    
            content = json.dumps(completion_data, separators=(",", ":"))
            yield f"data: {content}\n\n"
            time.sleep(0.1)
    
        end_completion_data: dict[str, Any] = {
            "id": f"chatcmpl-{completion_id}",
            "object": "chat.completion.chunk",
            "created": completion_timestamp,
            "model": model,
            "choices": [
                {
                    "index": 0,
                    "delta": {},
                    "finish_reason": "stop",
                }
            ],
        }
        content = json.dumps(end_completion_data, separators=(",", ":"))
        yield f"data: {content}\n\n"
    
    return StreamingResponse(streaming(), media_type='text/event-stream')

@app.post('/v1/embeddings')
async def create_embedding(request: Request):
    j_input = await request.json()
    #model = embedding_processing()
    embedding = embedding_proc.embedding(text_list=j_input['input'])
    await log_event()
    return JSONResponse(
        embedding
        )

async def log_event():
    LOG.info('served')

@app.post("/v1/completions")
async def completions(request: Request):
    req_data = await request.json()
    model = req_data.get('model', 'text-davinci-003')
    prompt = req_data.get('prompt')
    messages = req_data.get('messages')
    temperature = req_data.get('temperature', 1.0)
    top_p = req_data.get('top_p', 1.0)
    max_tokens = req_data.get('max_tokens', 4096)

    response = g4f.Completion.create(model='text-davinci-003', prompt=prompt, temperature=temperature, top_p=top_p, max_tokens=max_tokens,)

    completion_id = "".join(random.choices(string.ascii_letters + string.digits, k=24))
    completion_timestamp = int(time.time())

    return {
      "id": f"cmpl-{completion_id}",
      "object": "text_completion",
      "created": completion_timestamp,
      "model": "text-davinci-003",
      "choices": [
        {
          "text": response,
          "index": 0,
          "logprobs": None,
          "finish_reason": "length"
        }
      ],
      "usage": {
        "prompt_tokens": None,
        "completion_tokens": None,
        "total_tokens": None
      }
    }

@app.get("/v1/dashboard/billing/subscription")
@app.get("/dashboard/billing/subscription")
async def billing_subscription():
    return JSONResponse({
        "object": "billing_subscription",
        "has_payment_method": True,
        "canceled": False,
        "canceled_at": None,
        "delinquent": None,
        "access_until": 2556028800,
        "soft_limit": 6944500,
        "hard_limit": 166666666,
        "system_hard_limit": 166666666,
        "soft_limit_usd": 416.67,
        "hard_limit_usd": 9999.99996,
        "system_hard_limit_usd": 9999.99996,
        "plan": {
            "title": "Pay-as-you-go",
            "id": "payg"
        },
        "primary": True,
        "account_name": "OpenAI",
        "po_number": None,
        "billing_email": None,
        "tax_ids": None,
        "billing_address": {
            "city": "New York",
            "line1": "OpenAI",
            "country": "US",
            "postal_code": "NY10031"
        },
        "business_address": None
    })

@app.get("/v1/dashboard/billing/usage")
@app.get("/dashboard/billing/usage")
async def billing_usage():
    return JSONResponse({
        "object": "list",
        "daily_costs": [
            {
                "timestamp": time.time(),
                "line_items": [
                    {
                        "name": "GPT-4",
                        "cost": 0.0
                    },
                    {
                        "name": "Chat models",
                        "cost": 1.01
                    },
                    {
                        "name": "InstructGPT",
                        "cost": 0.0
                    },
                    {
                        "name": "Fine-tuning models",
                        "cost": 0.0
                    },
                    {
                        "name": "Embedding models",
                        "cost": 0.0
                    },
                    {
                        "name": "Image models",
                        "cost": 16.0
                    },
                    {
                        "name": "Audio models",
                        "cost": 0.0
                    }
                ]
            }
        ],
        "total_usage": 1.01
    })

@app.get("/v1/models")
@app.get("/models")
async def get_models():
    models_data = {"data": []}
    for model_name, model in ModelUtils.convert.items():
        models_data['data'].append({
            "id": model_name,
            "object": "model",
            "owned_by": model.base_provider,
            "tokens": 99999,
            "fallbacks": None,
            "endpoints": [
                "/v1/chat/completions"
            ],
            "limits": None,
            "permission": []
        })
    return JSONResponse(models_data)

@app.get("/v1/providers")
@app.get("/providers")
async def get_providers():
    providers_data = {"data": []}
    for provider_name in dir(Provider):
        if not provider_name.startswith('__'):
            try:
                provider = getattr(Provider, provider_name)
                providers_data["data"].append({
                    "provider": provider_name,
                    "model": list(provider.model),
                    "url": provider.url,
                    "working": bool(provider.working),
                    "supports_stream": bool(provider.supports_stream)
                })
            except:
                pass
    return JSONResponse(providers_data)

def process_provider(provider_name, model_name):
    try:
        p = getattr(g4f.Provider, provider_name)
        provider_status = {
            "provider": provider_name,
            "model": model_name,
            "url": p.url,
            "status": ""
        }

        # Проверяем только модель 'gpt-3.5-turbo' для провайдеров Wewordle и Qidinam
        if provider_name in ['Wewordle', 'Qidinam', 'DeepAi', 'GetGpt', 'Yqcloud'] and model_name != 'gpt-3.5-turbo':
            provider_status['status'] = 'Inactive'
            #print(f"{provider_name} with {model_name} skipped")
            return provider_status

        try:
            response = ChatCompletion.create(model=model_name, provider=p,
                                                 messages=[{"role": "user", "content": "Say 'Hello World!'"}], stream=False)
            if any(word in response for word in ['Hello World', 'Hello', 'hello', 'world']):
                provider_status['status'] = 'Active'
                #print(f"{provider_name} with {model_name} say: {response}")
            else:
                provider_status['status'] = 'Inactive'
                #print(f"{provider_name} with {model_name} say: Inactive")
        except Exception as e:
            provider_status['status'] = 'Inactive'
           # print(f"{provider_name} with {model_name} say: Error")

        return provider_status
    except:
        return None

async def run_check_script():
    session = aiohttp.ClientSession()
    while True:
        models = [model for model in g4f.models.ModelUtils.convert if model.startswith('gpt-') or model.startswith('claude') or model.startswith('text-')]
        providers = [provider for provider in dir(g4f.Provider) if not provider.startswith('__')]

        status = {'data': []}
        with concurrent.futures.ThreadPoolExecutor() as executor:
            futures = []
            for provider_name in providers:
                for model_name in models:
                    future = executor.submit(process_provider, provider_name, model_name)
                    futures.append(future)

            for future in concurrent.futures.as_completed(futures):
                result = future.result()
                if result is not None and result['status'] == 'Active':
                    status['data'].append(result)

        print(status)
        status['key'] = "test"
        tz = pytz.timezone('Asia/Shanghai')
        now = datetime.now(tz)
        print(now)
        status['time'] = now.strftime("%Y-%m-%d %H:%M:%S")

        if status['data']:
            # Здесь мы используем aiofiles для асинхронного записывания в файл
            async with aiofiles.open('status.json', 'w') as f:
                await f.write(json.dumps(status))

        # Pause for 5 minutes before starting the next cycle
        time.sleep(360)

# Запуск асинхронных задач
async def run_tasks():
    while True:
        await asyncio.gather(run_check_script())
        await asyncio.sleep(300)
    
# Запуск приложения
def main():
    loop = asyncio.get_event_loop()
    loop.run_until_complete(run_tasks())
    loop.close()

if __name__ == "__main__":
    main()