import os import shutil import gradio as gr from huggingface_hub import HfApi, whoami, ModelCard from gradio_huggingfacehub_search import HuggingfaceHubSearch from textwrap import dedent from pathlib import Path from tempfile import TemporaryDirectory from huggingface_hub.file_download import repo_folder_name from optimum.exporters.tasks import TasksManager from optimum.intel.utils.constant import _TASK_ALIASES from optimum.intel.openvino.utils import _HEAD_TO_AUTOMODELS from optimum.exporters import TasksManager from optimum.intel.utils.modeling_utils import _find_files_matching_pattern from optimum.intel import ( OVModelForAudioClassification, OVModelForCausalLM, OVModelForFeatureExtraction, OVModelForImageClassification, OVModelForMaskedLM, OVModelForQuestionAnswering, OVModelForSeq2SeqLM, OVModelForSequenceClassification, OVModelForTokenClassification, OVStableDiffusionPipeline, OVStableDiffusionXLPipeline, OVLatentConsistencyModelPipeline, OVModelForPix2Struct, OVWeightQuantizationConfig, ) def process_model( model_id: str, dtype: str, calibration_dataset: str, ratio: str, private_repo: bool, overwritte: bool, oauth_token: gr.OAuthToken, ): if oauth_token.token is None: raise ValueError("You must be logged in to use this space") model_name = model_id.split("/")[-1] username = whoami(oauth_token.token)["name"] new_repo_id = f"{username}/{model_name}-openvino-{dtype}" task = TasksManager.infer_task_from_model(model_id) library_name = TasksManager.infer_library_from_model(model_id) if task not in _HEAD_TO_AUTOMODELS: raise ValueError( f"The task '{task}' is not supported, only {_HEAD_TO_AUTOMODELS.keys()} tasks are supported" ) if task == "text2text-generation": raise ValueError("Export of Seq2Seq models is currently disabled.") auto_model_class = _HEAD_TO_AUTOMODELS[task] ov_files = _find_files_matching_pattern( model_id, pattern=r"(.*)?openvino(.*)?\_model.xml", use_auth_token=oauth_token.token, ) export = len(ov_files) == 0 is_int8 = dtype == "int8" if library_name == "diffusers": quant_method = "hybrid" elif not is_int8: quant_method = "awq" else: quant_method = "default" quantization_config = OVWeightQuantizationConfig( bits=8 if is_int8 else 4, quant_method=quant_method, dataset=None if quant_method=="default" else calibration_dataset, ratio=1.0 if is_int8 else ratio, ) api = HfApi(token=oauth_token.token) if api.repo_exists(new_repo_id) and not overwritte: raise Exception(f"Model {new_repo_id} already exist, please set overwritte=True to push on an existing repo") with TemporaryDirectory() as d: folder = os.path.join(d, repo_folder_name(repo_id=model_id, repo_type="models")) os.makedirs(folder) try: api.snapshot_download(repo_id=model_id, local_dir=folder, allow_patterns=["*.json"]) ov_model = eval(auto_model_class).from_pretrained( model_id, export=export, quantization_config=quantization_config, ) ov_model.save_pretrained(folder) new_repo_url = api.create_repo(repo_id=new_repo_id, exist_ok=True, private=private_repo) new_repo_id = new_repo_url.repo_id print("Repo created successfully!", new_repo_url) folder = Path(folder) folder_parts = len(folder.parts) for file_path in folder.glob("**/*"): name = Path(*file_path.parts[folder_parts:]) if not file_path.is_file() or any(part_name.startswith(".") for part_name in name.parts): continue try: api.upload_file( path_or_fileobj=file_path, path_in_repo=str(name), repo_id=new_repo_id, ) except Exception as e: raise Exception(f"Error uploading file {file_path}: {e}") try: card = ModelCard.load(model_id, token=oauth_token.token) except: card = ModelCard("") if card.data.tags is None: card.data.tags = [] card.data.tags.append("openvino") card.data.base_model = model_id card.text = dedent( f""" This model is a quantized version of [`{model_id}`](https://huggingface.co/{model_id}) and was exported to the OpenVINO format using [optimum-intel](https://github.com/huggingface/optimum-intel) via the [nncf-quantization](https://huggingface.co/spaces/echarlaix/nncf-quantization) space. First make sure you have optimum-intel installed: ```bash pip install optimum[openvino] ``` To load your model you can do as follows: ```python from optimum.intel import {auto_model_class} model_id = "{new_repo_id}" model = {auto_model_class}.from_pretrained(model_id) ``` """ ) card_path = os.path.join(folder, "README.md") card.save(card_path) api.upload_file( path_or_fileobj=card_path, path_in_repo="README.md", repo_id=new_repo_id, ) return f"This model was successfully quantized, find it under your repo {new_repo_url}'" finally: shutil.rmtree(folder, ignore_errors=True) DESCRIPTION = """ This Space uses [Optimum Intel](https://huggingface.co/docs/optimum/main/en/intel/openvino/optimization) to automatically apply NNCF weight only quantization on a model hosted on the [Hub](https://huggingface.co/models) and convert it to the [OpenVINO format](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html) if not already. The resulting model will then be pushed under your HF user namespace. For now we only support conversion for models that are hosted on public repositories. """ model_id = HuggingfaceHubSearch( label="Hub Model ID", placeholder="Search for model id on the hub", search_type="model", ) dtype = gr.Dropdown( ["int8", "int4"], value="int8", label="Precision data types", filterable=False, visible=True, ) """ quant_method = gr.Dropdown( ["default", "awq", "hybrid"], value="default", label="Quantization method", filterable=False, visible=True, ) """ calibration_dataset = gr.Dropdown( [ "wikitext2", "c4", "c4-new", "conceptual_captions", "laion/220k-GPT4Vision-captions-from-LIVIS", "laion/filtered-wit", ], value="wikitext2", label="Calibration dataset", filterable=False, visible=True, ) ratio = gr.Slider( label="Ratio", info="Parameter used when applying 4-bit quantization to control the ratio between 4-bit and 8-bit quantization", minimum=0.0, maximum=1.0, step=0.1, value=1.0, ) private_repo = gr.Checkbox( value=False, label="Private Repo", info="Create a private repo under your username", ) overwritte = gr.Checkbox( value=False, label="Overwrite repo content", info="Push files on existing repo potentially overwriting existing files", ) interface = gr.Interface( fn=process_model, inputs=[ model_id, dtype, calibration_dataset, ratio, private_repo, overwritte, ], outputs=[ gr.Markdown(label="output"), ], title="Quantize your model with NNCF", description=DESCRIPTION, api_name=False, ) with gr.Blocks() as demo: gr.Markdown("You must be logged in to use this space") gr.LoginButton(min_width=250) interface.render() demo.launch()