Spaces:
Running
Running
import os | |
import shutil | |
import gradio as gr | |
from huggingface_hub import HfApi, whoami, ModelCard | |
from gradio_huggingfacehub_search import HuggingfaceHubSearch | |
from textwrap import dedent | |
from tempfile import TemporaryDirectory | |
from huggingface_hub.file_download import repo_folder_name | |
from optimum.exporters.tasks import TasksManager | |
from optimum.intel.utils.constant import _TASK_ALIASES | |
from optimum.intel.openvino.utils import _HEAD_TO_AUTOMODELS | |
from optimum.exporters import TasksManager | |
from optimum.intel.utils.modeling_utils import _find_files_matching_pattern | |
from optimum.intel import ( | |
OVModelForAudioClassification, | |
OVModelForCausalLM, | |
OVModelForFeatureExtraction, | |
OVModelForImageClassification, | |
OVModelForMaskedLM, | |
OVModelForQuestionAnswering, | |
OVModelForSeq2SeqLM, | |
OVModelForSequenceClassification, | |
OVModelForTokenClassification, | |
OVStableDiffusionPipeline, | |
OVStableDiffusionXLPipeline, | |
OVLatentConsistencyModelPipeline, | |
OVModelForPix2Struct, | |
OVWeightQuantizationConfig, | |
) | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
def process_model( | |
model_id: str, | |
dtype: str, | |
private_repo: bool, | |
task: str, | |
oauth_token: gr.OAuthToken, | |
): | |
if oauth_token.token is None: | |
raise ValueError("You must be logged in to use this space") | |
model_name = model_id.split("/")[-1] | |
username = whoami(oauth_token.token)["name"] | |
new_repo_id = f"{username}/{model_name}-openvino-{dtype}" | |
task = TasksManager.map_from_synonym(task) | |
if task == "auto": | |
try: | |
task = TasksManager.infer_task_from_model(model_id) | |
except Exception as e: | |
raise ValueError( | |
"The task could not be automatically inferred. " | |
f"Please pass explicitely the task with the relevant task from {', '.join(TasksManager.get_all_tasks())}. {e}" | |
) | |
task = _TASK_ALIASES.get(task, task) | |
if task not in _HEAD_TO_AUTOMODELS: | |
raise ValueError( | |
f"The task '{task}' is not supported, only {_HEAD_TO_AUTOMODELS.keys()} tasks are supported" | |
) | |
if task == "text2text-generation": | |
raise ValueError("Export of Seq2Seq models is currently disabled.") | |
auto_model_class = _HEAD_TO_AUTOMODELS[task] | |
ov_files = _find_files_matching_pattern( | |
model_id, | |
pattern=r"(.*)?openvino(.*)?\_model.xml", | |
use_auth_token=oauth_token.token, | |
) | |
export = len(ov_files) == 0 | |
quantization_config = OVWeightQuantizationConfig(bits=8 if dtype == "int8" else 4) | |
api = HfApi(token=oauth_token.token) | |
with TemporaryDirectory() as d: | |
folder = os.path.join(d, repo_folder_name(repo_id=model_id, repo_type="models")) | |
os.makedirs(folder) | |
try: | |
api.snapshot_download(repo_id=model_id, local_dir=folder, allow_patterns=["*.json"]) | |
ov_model = eval(auto_model_class).from_pretrained( | |
model_id, export=export, quantization_config=quantization_config | |
) | |
ov_model.save_pretrained(folder) | |
new_repo_url = api.create_repo( | |
repo_id=new_repo_id, exist_ok=True, private=private_repo | |
) | |
new_repo_id = new_repo_url.repo_id | |
print("Repo created successfully!", new_repo_url) | |
file_names = (f for f in os.listdir(folder) if os.path.isfile(os.path.join(folder, f))) | |
for file in file_names: | |
file_path = os.path.join(folder, file) | |
try: | |
api.upload_file( | |
path_or_fileobj=file_path, | |
path_in_repo=file, | |
repo_id=new_repo_id, | |
) | |
except Exception as e: | |
raise Exception(f"Error uploading file {file_path}: {e}") | |
try: | |
card = ModelCard.load(model_id, token=oauth_token.token) | |
except: | |
card = ModelCard("") | |
if card.data.tags is None: | |
card.data.tags = [] | |
card.data.tags.append("openvino") | |
card.data.base_model = model_id | |
card.text = dedent( | |
f""" | |
This model is a quantized version of [`{model_id}`](https://huggingface.co/{model_id}) and was exported to the OpenVINO format using [optimum-intel](https://github.com/huggingface/optimum-intel) via the [nncf-quantization](https://huggingface.co/spaces/echarlaix/nncf-quantization) space. | |
First make sure you have optimum-intel installed: | |
```bash | |
pip install optimum[openvino] | |
``` | |
To load your model you can do as follows: | |
```python | |
from optimum.intel import {auto_model_class} | |
model_id = {new_repo_id} | |
model = {auto_model_class}.from_pretrained(model_id) | |
``` | |
""" | |
) | |
card_path = os.path.join(folder, "README.md") | |
card.save(card_path) | |
api.upload_file( | |
path_or_fileobj=card_path, | |
path_in_repo="README.md", | |
repo_id=new_repo_id, | |
) | |
return f"This model was successfully quantized, find it under your repo {new_repo_url}'" | |
finally: | |
shutil.rmtree(folder, ignore_errors=True) | |
model_id = HuggingfaceHubSearch( | |
label="Hub Model ID", | |
placeholder="Search for model id on the hub", | |
search_type="model", | |
) | |
dtype = gr.Dropdown( | |
["int8", "int4"], | |
value="int8", | |
label="Precision data types", | |
filterable=False, | |
visible=True, | |
) | |
private_repo = gr.Checkbox( | |
value=False, | |
label="Private Repo", | |
info="Create a private repo under your username", | |
) | |
task = gr.Textbox( | |
value="auto", | |
label="Task : can be left to auto, will be automatically inferred", | |
) | |
interface = gr.Interface( | |
fn=process_model, | |
inputs=[ | |
model_id, | |
dtype, | |
private_repo, | |
task, | |
], | |
outputs=[ | |
gr.Markdown(label="output"), | |
], | |
title="Quantize your model with NNCF", | |
description="The space takes a model, converts it to the OpenVINO format and applies NNCF weight only quantization. The resulting model will then be pushed on the Hub under your HF user namespace", | |
api_name=False, | |
) | |
with gr.Blocks() as demo: | |
gr.Markdown("You must be logged in to use this space") | |
gr.LoginButton(min_width=250) | |
interface.render() | |
demo.launch() | |