echarlaix's picture
echarlaix HF staff
improve desccription
0cbd808
raw
history blame
6.56 kB
import os
import shutil
import gradio as gr
from huggingface_hub import HfApi, whoami, ModelCard
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from textwrap import dedent
from tempfile import TemporaryDirectory
from huggingface_hub.file_download import repo_folder_name
from optimum.exporters.tasks import TasksManager
from optimum.intel.utils.constant import _TASK_ALIASES
from optimum.intel.openvino.utils import _HEAD_TO_AUTOMODELS
from optimum.exporters import TasksManager
from optimum.intel.utils.modeling_utils import _find_files_matching_pattern
from optimum.intel import (
OVModelForAudioClassification,
OVModelForCausalLM,
OVModelForFeatureExtraction,
OVModelForImageClassification,
OVModelForMaskedLM,
OVModelForQuestionAnswering,
OVModelForSeq2SeqLM,
OVModelForSequenceClassification,
OVModelForTokenClassification,
OVStableDiffusionPipeline,
OVStableDiffusionXLPipeline,
OVLatentConsistencyModelPipeline,
OVModelForPix2Struct,
OVWeightQuantizationConfig,
)
HF_TOKEN = os.environ.get("HF_TOKEN")
def process_model(
model_id: str,
dtype: str,
private_repo: bool,
task: str,
oauth_token: gr.OAuthToken,
):
if oauth_token.token is None:
raise ValueError("You must be logged in to use this space")
model_name = model_id.split("/")[-1]
username = whoami(oauth_token.token)["name"]
new_repo_id = f"{username}/{model_name}-openvino-{dtype}"
task = TasksManager.map_from_synonym(task)
if task == "auto":
try:
task = TasksManager.infer_task_from_model(model_id)
except Exception as e:
raise ValueError(
"The task could not be automatically inferred. "
f"Please pass explicitely the task with the relevant task from {', '.join(TasksManager.get_all_tasks())}. {e}"
)
task = _TASK_ALIASES.get(task, task)
if task not in _HEAD_TO_AUTOMODELS:
raise ValueError(
f"The task '{task}' is not supported, only {_HEAD_TO_AUTOMODELS.keys()} tasks are supported"
)
if task == "text2text-generation":
raise ValueError("Export of Seq2Seq models is currently disabled.")
auto_model_class = _HEAD_TO_AUTOMODELS[task]
ov_files = _find_files_matching_pattern(
model_id,
pattern=r"(.*)?openvino(.*)?\_model.xml",
use_auth_token=oauth_token.token,
)
export = len(ov_files) == 0
quantization_config = OVWeightQuantizationConfig(bits=8 if dtype == "int8" else 4)
api = HfApi(token=oauth_token.token)
with TemporaryDirectory() as d:
folder = os.path.join(d, repo_folder_name(repo_id=model_id, repo_type="models"))
os.makedirs(folder)
try:
api.snapshot_download(repo_id=model_id, local_dir=folder, allow_patterns=["*.json"])
ov_model = eval(auto_model_class).from_pretrained(
model_id, export=export, quantization_config=quantization_config
)
ov_model.save_pretrained(folder)
new_repo_url = api.create_repo(
repo_id=new_repo_id, exist_ok=True, private=private_repo
)
new_repo_id = new_repo_url.repo_id
print("Repo created successfully!", new_repo_url)
file_names = (f for f in os.listdir(folder) if os.path.isfile(os.path.join(folder, f)))
for file in file_names:
file_path = os.path.join(folder, file)
try:
api.upload_file(
path_or_fileobj=file_path,
path_in_repo=file,
repo_id=new_repo_id,
)
except Exception as e:
raise Exception(f"Error uploading file {file_path}: {e}")
try:
card = ModelCard.load(model_id, token=oauth_token.token)
except:
card = ModelCard("")
if card.data.tags is None:
card.data.tags = []
card.data.tags.append("openvino")
card.data.base_model = model_id
card.text = dedent(
f"""
This model is a quantized version of [`{model_id}`](https://huggingface.co/{model_id}) and was exported to the OpenVINO format using [optimum-intel](https://github.com/huggingface/optimum-intel) via the [nncf-quantization](https://huggingface.co/spaces/echarlaix/nncf-quantization) space.
First make sure you have optimum-intel installed:
```bash
pip install optimum[openvino]
```
To load your model you can do as follows:
```python
from optimum.intel import {auto_model_class}
model_id = {new_repo_id}
model = {auto_model_class}.from_pretrained(model_id)
```
"""
)
card_path = os.path.join(folder, "README.md")
card.save(card_path)
api.upload_file(
path_or_fileobj=card_path,
path_in_repo="README.md",
repo_id=new_repo_id,
)
return f"This model was successfully quantized, find it under your repo {new_repo_url}'"
finally:
shutil.rmtree(folder, ignore_errors=True)
model_id = HuggingfaceHubSearch(
label="Hub Model ID",
placeholder="Search for model id on the hub",
search_type="model",
)
dtype = gr.Dropdown(
["int8", "int4"],
value="int8",
label="Precision data types",
filterable=False,
visible=True,
)
private_repo = gr.Checkbox(
value=False,
label="Private Repo",
info="Create a private repo under your username",
)
task = gr.Textbox(
value="auto",
label="Task : can be left to auto, will be automatically inferred",
)
interface = gr.Interface(
fn=process_model,
inputs=[
model_id,
dtype,
private_repo,
task,
],
outputs=[
gr.Markdown(label="output"),
],
title="Quantize your model with NNCF",
description="The space takes a model, converts it to the OpenVINO format and applies NNCF weight only quantization. The resulting model will then be pushed on the Hub under your HF user namespace",
api_name=False,
)
with gr.Blocks() as demo:
gr.Markdown("You must be logged in to use this space")
gr.LoginButton(min_width=250)
interface.render()
demo.launch()