Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from vptq.app_utils import get_chat_loop_generator | |
# Update model list with annotations | |
model_list_with_annotations = { | |
# "VPTQ-community/Meta-Llama-3.1-70B-Instruct-v8-k65536-65536-woft": "Llama 3.1 70B @ 4bit", | |
# "VPTQ-community/Meta-Llama-3.1-70B-Instruct-v8-k65536-256-woft": "Llama 3.1 70B @ 3bit", | |
# "VPTQ-community/Meta-Llama-3.1-70B-Instruct-v16-k65536-65536-woft": "Llama 3.1 70B @ 2bit", | |
# "VPTQ-community/Qwen2.5-72B-Instruct-v8-k65536-65536-woft": "Qwen2.5 72B @ 4 bits", | |
# "VPTQ-community/Qwen2.5-72B-Instruct-v8-k65536-256-woft": "Qwen2.5 72B @ 3 bits", | |
# "VPTQ-community/Qwen2.5-72B-Instruct-v16-k65536-65536-woft": "Qwen2.5 72B @ 3 bits", | |
# "VPTQ-community/Qwen2.5-32B-Instruct-v8-k65536-65536-woft": "Qwen2.5 32B @ 4 bits", | |
"VPTQ-community/Qwen2.5-32B-Instruct-v8-k65536-256-woft": "Qwen2.5 32B @ 3 bits", | |
"VPTQ-community/Qwen2.5-32B-Instruct-v16-k65536-0-woft": "Qwen2.5 32B @ 2 bits" | |
} | |
# Create a list of choices with annotations for the dropdown | |
model_list_with_annotations_display = [f"{key} ({value})" for key, value in model_list_with_annotations.items()] | |
model_keys = list(model_list_with_annotations.keys()) | |
current_model_g = model_keys[0] | |
chat_completion = get_chat_loop_generator(current_model_g) | |
def update_title_and_chatmodel(model): | |
model = str(model) | |
global chat_completion | |
global current_model_g | |
if model != current_model_g: | |
current_model_g = model | |
chat_completion = get_chat_loop_generator(current_model_g) | |
return model | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for message in chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message | |
response += token | |
yield response | |
css = """ | |
h1 { | |
text-align: center; | |
display: block; | |
} | |
""" | |
chatbot = gr.Chatbot(label="Gradio ChatInterface") | |
with gr.Blocks() as demo: | |
with gr.Column(scale=1): | |
title_output = gr.Markdown("Please select a model to run") | |
chat_demo = gr.ChatInterface( | |
respond, | |
additional_inputs_accordion=gr.Accordion( | |
label="⚙️ Parameters", open=False, render=False | |
), | |
fill_height=False, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)" | |
), | |
], | |
) | |
model_select = gr.Dropdown( | |
choices=model_list_with_annotations_display, | |
label="Models", | |
value=model_list_with_annotations_display[0], | |
info="Model & Estimated Quantized Bitwidth" | |
) | |
model_select.change(update_title_and_chatmodel, inputs=[model_select], outputs=title_output) | |
if __name__ == "__main__": | |
demo.launch() |