File size: 5,534 Bytes
4409449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import os

os.environ['PYOPENGL_PLATFORM'] = 'egl'
import torch
import numpy as np
import cv2

import matplotlib.pyplot as plt
import glob
import pickle
import pyrender
import trimesh
from smplx import SMPL as _SMPL
from smplx.utils import SMPLOutput as ModelOutput
from scipy.spatial.transform.rotation import Rotation as RRR

class SMPL(_SMPL):
    """ Extension of the official SMPL implementation to support more joints """

    def __init__(self, *args, **kwargs):
        super(SMPL, self).__init__(*args, **kwargs)
        # joints = [constants.JOINT_MAP[i] for i in constants.JOINT_NAMES]
        # J_regressor_extra = np.load(config.JOINT_REGRESSOR_TRAIN_EXTRA)
        # self.register_buffer('J_regressor_extra', torch.tensor(J_regressor_extra, dtype=torch.float32))
        # self.joint_map = torch.tensor(joints, dtype=torch.long)

    def forward(self, *args, **kwargs):
        kwargs['get_skin'] = True
        smpl_output = super(SMPL, self).forward(*args, **kwargs)
        # extra_joints = vertices2joints(self.J_regressor_extra, smpl_output.vertices)        #Additional 9 joints #Check doc/J_regressor_extra.png
        # joints = torch.cat([smpl_output.joints, extra_joints], dim=1)               #[N, 24 + 21, 3]  + [N, 9, 3]
        # joints = joints[:, self.joint_map, :]
        joints = smpl_output.joints
        output = ModelOutput(vertices=smpl_output.vertices,
                             global_orient=smpl_output.global_orient,
                             body_pose=smpl_output.body_pose,
                             joints=joints,
                             betas=smpl_output.betas,
                             full_pose=smpl_output.full_pose)
        return output

class Renderer:
    """
    Renderer used for visualizing the SMPL model
    Code adapted from https://github.com/vchoutas/smplify-x
    """
    def __init__(self, focal_length=5000, img_res=(224,224), faces=None):
        self.renderer = pyrender.OffscreenRenderer(viewport_width=img_res[0],
                                       viewport_height=img_res[1],
                                       point_size=1.0)
        self.focal_length = focal_length
        self.camera_center = [img_res[0] // 2, img_res[1] // 2]
        self.faces = faces
    def __call__(self, vertices, camera_translation, image):
        material = pyrender.MetallicRoughnessMaterial(
            metallicFactor=0.2,
            alphaMode='OPAQUE',
            baseColorFactor=(0.8, 0.3, 0.3, 1.0))

        camera_translation[0] *= -1.

        mesh = trimesh.Trimesh(vertices, self.faces)
        rot = trimesh.transformations.rotation_matrix(
            np.radians(180), [1, 0, 0])
        mesh.apply_transform(rot)
        mesh = pyrender.Mesh.from_trimesh(mesh, material=material)

        
        scene = pyrender.Scene(bg_color = [1, 1, 1, 0.8], ambient_light=(0.4, 0.4, 0.4))
        scene.add(mesh, 'mesh')

        camera_pose = np.eye(4)
        camera_pose[:3, 3] = camera_translation
        camera = pyrender.IntrinsicsCamera(fx=self.focal_length, fy=self.focal_length,
                                           cx=self.camera_center[0], cy=self.camera_center[1])
        scene.add(camera, pose=camera_pose)


        light = pyrender.DirectionalLight(color=[1.0, 1.0, 1.0], intensity=300)
        light_pose = np.eye(4)

        light_pose[:3, 3] = np.array([0, -1, 1])
        scene.add(light, pose=light_pose)

        light_pose[:3, 3] = np.array([0, 1, 1])
        scene.add(light, pose=light_pose)

        light_pose[:3, 3] = np.array([1, 1, 2])
        scene.add(light, pose=light_pose)

        color, rend_depth = self.renderer.render(scene, flags=pyrender.RenderFlags.RGBA)
        color = color.astype(np.float32) / 255.0
        valid_mask = (rend_depth > 0)[:,:,None]
        output_img = (color[:, :, :3] * valid_mask +
                  (1 - valid_mask) * image)
        return output_img

class SMPLRender():
    def __init__(self, SMPL_MODEL_DIR):
        if torch.cuda.is_available():
            self.device = torch.device("cuda")
        else:
            self.device = torch.device("cpu")
            
        self.smpl = SMPL(SMPL_MODEL_DIR,
                             batch_size=1,
                             create_transl=False).to(self.device)

        self.focal_length = 5000

    def render(self, image, smpl_param, is_headroot=False):
        pose = smpl_param['pred_pose']
        if pose.size==72:
            pose = pose.reshape(-1,3)
            pose = RRR.from_rotvec(pose).as_matrix()
            pose = pose.reshape(1,24,3,3)
        pred_betas = torch.from_numpy(smpl_param['pred_shape'].reshape(1, 10).astype(np.float32)).to(self.device)
        pred_rotmat = torch.from_numpy(pose.astype(np.float32)).to(self.device)
        pred_camera_t = smpl_param['pred_root'].reshape(1, 3).astype(np.float32)
        smpl_output = self.smpl(betas=pred_betas, body_pose=pred_rotmat[:, 1:],
                           global_orient=pred_rotmat[:, 0].unsqueeze(1), pose2rot=False)


        vertices = smpl_output.vertices[0].detach().cpu().numpy()
        pred_camera_t = pred_camera_t[0]

        if is_headroot:
            pred_camera_t = pred_camera_t - smpl_output.joints[0,12].detach().cpu().numpy()

        renderer = Renderer(focal_length=self.focal_length,
                                 img_res=(image.shape[1], image.shape[0]), faces=self.smpl.faces)

        renderImg = renderer(vertices, pred_camera_t.copy(), image / 255.0)
        renderer.renderer.delete()
        return renderImg