File size: 9,444 Bytes
e82dda8
273867b
88fd33d
 
 
 
e82dda8
88fd33d
 
 
 
e82dda8
 
 
 
88fd33d
 
 
 
e82dda8
 
d9187eb
 
 
 
 
 
 
3d59359
88fd33d
 
d9187eb
88fd33d
e82dda8
 
 
88fd33d
7f83c31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88fd33d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7e7106
88fd33d
a7e7106
 
 
 
 
 
e82dda8
7f83c31
a7e7106
7f83c31
e82dda8
 
88fd33d
273867b
 
 
 
 
 
 
 
 
 
e82dda8
 
273867b
e82dda8
 
88fd33d
e82dda8
 
 
 
 
 
 
88fd33d
e82dda8
88fd33d
 
e82dda8
88fd33d
 
 
 
 
 
 
 
 
 
 
 
 
d9187eb
88fd33d
 
 
 
 
 
1a07b97
88fd33d
 
d9187eb
 
88fd33d
1a07b97
88fd33d
 
d9187eb
88fd33d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9187eb
88fd33d
 
d9187eb
88fd33d
 
 
d9187eb
88fd33d
 
d9187eb
e82dda8
 
 
a7e7106
 
 
 
 
 
 
 
d9187eb
a7e7106
 
 
13ca93e
a7e7106
88fd33d
a7e7106
 
 
 
 
88fd33d
a7e7106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88fd33d
 
a7e7106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a07b97
 
13ca93e
 
 
 
 
 
 
 
 
 
 
 
1a07b97
 
a7e7106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a07b97
a7e7106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a07b97
a7e7106
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
from datasets import load_dataset
from collections import Counter, defaultdict
from random import sample, shuffle
import datasets
from pandas import DataFrame
from huggingface_hub import list_datasets
import os
import gradio as gr

import secrets


parti_prompt_results = []
ORG = "diffusers-parti-prompts"
SUBMISSIONS = {
    "sd-v1-5": load_dataset(os.path.join(ORG, "sd-v1-5"))["train"],
    "sd-v2-1": load_dataset(os.path.join(ORG, "sd-v2.1"))["train"],
    "if-v1-0": load_dataset(os.path.join(ORG, "karlo-v1"))["train"],
    "karlo": load_dataset(os.path.join(ORG, "if-v-1.0"))["train"],
    # "Kadinsky":
}

LINKS = {
    "sd-v1-5": "https://huggingface.co/runwayml/stable-diffusion-v1-5",
    "sd-v2-1": "https://huggingface.co/stabilityai/stable-diffusion-2-1",
    "if-v1-0": "https://huggingface.co/DeepFloyd/IF-I-XL-v1.0",
    "karlo": "https://huggingface.co/kakaobrain/karlo-v1-alpha",
}
NUM_QUESTIONS = 10
MODEL_KEYS = "-".join(SUBMISSIONS.keys())
SUBMISSION_ORG = f"results-{MODEL_KEYS}"
PROMPT_FORMAT = "Pick the picture that best matches the prompt: **{}**"

submission_names = list(SUBMISSIONS.keys())
num_images = len(SUBMISSIONS[submission_names[0]])


def load_submissions():
    all_datasets = list_datasets(author=SUBMISSION_ORG)
    relevant_ids = [d.id for d in all_datasets]
    
    submitted_ids = []
    for _id in relevant_ids:
        ds = load_dataset(_id)["train"]
        submitted_ids += ds["id"]
    
    submitted_ids = Counter(submitted_ids)
    return submitted_ids


SUBMITTED_IDS = load_submissions()


def generate_random_hash(length=8):
    """
    Generates a random hash of specified length.
    
    Args:
        length (int): The length of the hash to generate.
        
    Returns:
        str: A random hash of specified length.
    """
    if length % 2 != 0:
        raise ValueError("Length should be an even number.")
    
    num_bytes = length // 2
    random_bytes = secrets.token_bytes(num_bytes)
    random_hash = secrets.token_hex(num_bytes)
    
    return random_hash
    

def refresh(row_number, dataframe):
    if row_number == NUM_QUESTIONS:
        submitted_ids = load_submissions()
        return start(submitted_ids)
    else:
        return dataframe

def start():
    ids = {id: 0 for id in range(num_images)}
    ids = {**ids, **SUBMITTED_IDS}

    # sort by count
    ids = sorted(ids.items(), key=lambda x: x[1])
    freq_ids = defaultdict(list)
    for k, v in ids:
        freq_ids[v].append(k)

    # shuffle in-between categories
    for k, v_list in freq_ids.items():
        shuffle(v_list)
        freq_ids[v] = v_list

    shuffled_ids = sum(list(freq_ids.values()), [])

    # get lowest count ids
    id_candidates = shuffled_ids[: (10 * NUM_QUESTIONS)]

    # get random `NUM_QUESTIONS` ids to check
    image_ids = sample(id_candidates, k=NUM_QUESTIONS)
    images = {}

    for i in range(NUM_QUESTIONS):
        order = list(range(len(SUBMISSIONS)))
        shuffle(order)

        id = image_ids[i]
        row = SUBMISSIONS[submission_names[0]][id]
        images[i] = {
            "prompt": row["Prompt"],
            "result": "",
            "id": id,
            "Challenge": row["Challenge"],
            "Category": row["Category"],
            "Note": row["Note"],
        }
        for n, m in enumerate(order):
            images[i][f"choice_{n}"] = m

    images_frame = DataFrame.from_dict(images, orient="index")
    return images_frame


def process(dataframe, row_number=0):
    if row_number == NUM_QUESTIONS:
        return None, "", ""

    image_id = dataframe.iloc[row_number]["id"]
    choices = [
        submission_names[dataframe.iloc[row_number][f"choice_{i}"]]
        for i in range(len(SUBMISSIONS))
    ]
    images = (SUBMISSIONS[c][int(image_id)]["images"] for c in choices)

    prompt = SUBMISSIONS[choices[0]][int(image_id)]["Prompt"]
    prompt = PROMPT_FORMAT.format(prompt)
    counter = f"{row_number + 1}/{NUM_QUESTIONS}"

    return *images, prompt, counter


def write_result(user_choice, row_number, dataframe):
    if row_number == NUM_QUESTIONS:
        return row_number, dataframe

    user_choice = int(user_choice)
    chosen_model = submission_names[dataframe.iloc[row_number][f"choice_{user_choice}"]]

    dataframe.loc[row_number, "result"] = chosen_model
    return row_number + 1, dataframe


def get_index(evt: gr.SelectData) -> int:
    return evt.index


def change_view(row_number, dataframe):
    if row_number == NUM_QUESTIONS:

        favorite_model = dataframe["result"].value_counts().idxmax()
        dataset = datasets.Dataset.from_pandas(dataframe)
        dataset = dataset.remove_columns(set(dataset.column_names) - set(["id", "result"]))
        hash = generate_random_hash()
        repo_id = os.path.join(SUBMISSION_ORG, hash)

        dataset.push_to_hub(repo_id, token=os.getenv("HF_TOKEN"))
        return {
            intro_view: gr.update(visible=True),
            result_view: gr.update(visible=True),
            gallery_view: gr.update(visible=False),
            result: f"You are of type: [**{favorite_model}**]({LINKS[favorite_model]}) πŸ”₯",
        }
    else:
        return {
            intro_view: gr.update(visible=False),
            result_view: gr.update(visible=False),
            gallery_view: gr.update(visible=True),
            result: "",
        }


TITLE = "# Community Parti Prompts - Who is your open-source genAI model?"
DESCRIPTION = """
*This is an interactive game in which you click through pre-generated images from SD-v1-5, SD-v2.1, Karlo, and IF 
using [Parti Prompts](https://huggingface.co/datasets/nateraw/parti-prompts) prompts.* \n
*You choices will go into the public community [genAI leaderboard](TODO).*
"""
EXPLANATION = """\n\n
## How it works πŸ“– \n\n

1. Click on 'Start'
2. A prompt and 4 different images are displayed
3. Select your favorite image
4. After 10 rounds your favorite diffusion model is displayed
"""

GALLERY_COLUMN_NUM = len(SUBMISSIONS)

with gr.Blocks() as demo:
    gr.Markdown(TITLE)
    gr.Markdown(DESCRIPTION)

    with gr.Column(visible=True) as intro_view:
        gr.Markdown(EXPLANATION)
        start_button = gr.Button("Start").style(full_width=False)

    headers = ["prompt", "result", "id", "Challenge", "Category", "Note"] + [
        f"choice_{i}" for i in range(len(SUBMISSIONS))
    ]
    datatype = ["str", "str", "number", "str", "str", "str"] + len(SUBMISSIONS) * [
        "number"
    ]

    with gr.Column(visible=False):
        row_number = gr.Number(
            label="Current row selection index",
            value=0,
            precision=0,
            interactive=False,
        )

    # Create Data Frame
    with gr.Column(visible=False) as result_view:
        result = gr.Markdown("")
        dataframe = gr.Dataframe(
            headers=headers,
            datatype=datatype,
            row_count=NUM_QUESTIONS,
            col_count=(6 + len(SUBMISSIONS), "fixed"),
            interactive=False,
        )
        gr.Markdown("Click on start to play again!")

    with gr.Column(visible=False) as gallery_view:
        counter = gr.Markdown(f" ### 1/{NUM_QUESTIONS}")
        prompt = gr.Markdown(PROMPT_FORMAT.format(""))
        with gr.Blocks():
            with gr.Row() as images:
                with gr.Column:
                    image_1 = gr.Image(interactive=False)
                    image_1_button = gr.Button("Select 1").style(full_width=True)
                with gr.Column:
                    image_2 = gr.Image(interactive=False)
                    image_2_button = gr.Button("Select 2").style(full_width=True)
                with gr.Column:
                    image_3 = gr.Image(interactive=False)
                    image_3_button = gr.Button("Select 3").style(full_width=True)
                with gr.Column:
                    image_3 = gr.Image(interactive=False)
                    image_3_button = gr.Button("Select 4").style(full_width=True)         
                
        next_button = gr.Button("Confirm").style(full_width=True)

    with gr.Column(visible=False):
        selected_image = gr.Number(label="Selected index", value=-1, precision=0)

    start_button.click(
        fn=start,
        inputs=[],
        outputs=dataframe,
        show_progress=True
    ).then(
        fn=lambda x: 0 if x == NUM_QUESTIONS else x,
        inputs=[row_number],
        outputs=[row_number],
    ).then(
        fn=change_view,
        inputs=[row_number, dataframe],
        outputs=[intro_view, result_view, gallery_view, result]
    ).then(
        fn=process, inputs=[dataframe], outputs=[image_1, image_2, image_3, image_4, prompt, counter]
    )

    gallery.select(
        fn=get_index,
        outputs=selected_image,
        queue=False,
    )

    next_button.click(
        fn=write_result,
        inputs=[selected_image, row_number, dataframe],
        outputs=[row_number, dataframe],
    ).then(
        fn=change_view,
        inputs=[row_number, dataframe],
        outputs=[intro_view, result_view, gallery_view, result]
    ).then(
        fn=process,
        inputs=[dataframe, row_number],
        outputs=[image_1, image_2, image_3, image_4, prompt, counter]
    ).then(
        fn=lambda x: 0 if x == NUM_QUESTIONS else x,
        inputs=[row_number],
        outputs=[row_number],
    ).then(
        fn=refresh,
        inputs=[row_number, dataframe],
        outputs=[dataframe],
    )

demo.launch()