Spaces:
Running
on
Zero
Running
on
Zero
import json | |
import torch | |
from transformers.utils import WEIGHTS_NAME, CONFIG_NAME | |
from transformers.utils.hub import cached_file | |
def load_config_hf(model_name): | |
resolved_archive_file = cached_file(model_name, CONFIG_NAME, _raise_exceptions_for_missing_entries=False) | |
return json.load(open(resolved_archive_file)) | |
def load_state_dict_hf(model_name, device=None, dtype=None): | |
# If not fp32, then we don't want to load directly to the GPU | |
mapped_device = "cpu" if dtype not in [torch.float32, None] else device | |
resolved_archive_file = cached_file(model_name, WEIGHTS_NAME, _raise_exceptions_for_missing_entries=False) | |
return torch.load(resolved_archive_file, map_location=mapped_device) | |
# Convert dtype before moving to GPU to save memory | |
if dtype is not None: | |
state_dict = {k: v.to(dtype=dtype) for k, v in state_dict.items()} | |
state_dict = {k: v.to(device=device) for k, v in state_dict.items()} | |
return state_dict | |