VideoMamba / mamba /mamba_ssm /ops /selective_scan_interface.py
SakuraD's picture
init
29a3d5a
raw
history blame
35.8 kB
# Copyright (c) 2023, Tri Dao, Albert Gu.
import torch
import torch.nn.functional as F
from torch.cuda.amp import custom_bwd, custom_fwd
from einops import rearrange, repeat
from causal_conv1d import causal_conv1d_fn
import causal_conv1d_cuda
import selective_scan_cuda
class SelectiveScanFn(torch.autograd.Function):
@staticmethod
def forward(ctx, u, delta, A, B, C, D=None, z=None, delta_bias=None, delta_softplus=False,
return_last_state=False):
if u.stride(-1) != 1:
u = u.contiguous()
if delta.stride(-1) != 1:
delta = delta.contiguous()
if D is not None:
D = D.contiguous()
if B.stride(-1) != 1:
B = B.contiguous()
if C.stride(-1) != 1:
C = C.contiguous()
if z is not None and z.stride(-1) != 1:
z = z.contiguous()
if B.dim() == 3:
B = rearrange(B, "b dstate l -> b 1 dstate l")
ctx.squeeze_B = True
if C.dim() == 3:
C = rearrange(C, "b dstate l -> b 1 dstate l")
ctx.squeeze_C = True
out, x, *rest = selective_scan_cuda.fwd(u, delta, A, B, C, D, z, delta_bias, delta_softplus)
ctx.delta_softplus = delta_softplus
ctx.has_z = z is not None
last_state = x[:, :, -1, 1::2] # (batch, dim, dstate)
if not ctx.has_z:
ctx.save_for_backward(u, delta, A, B, C, D, delta_bias, x)
return out if not return_last_state else (out, last_state)
else:
ctx.save_for_backward(u, delta, A, B, C, D, z, delta_bias, x, out)
out_z = rest[0]
return out_z if not return_last_state else (out_z, last_state)
@staticmethod
def backward(ctx, dout, *args):
if not ctx.has_z:
u, delta, A, B, C, D, delta_bias, x = ctx.saved_tensors
z = None
out = None
else:
u, delta, A, B, C, D, z, delta_bias, x, out = ctx.saved_tensors
if dout.stride(-1) != 1:
dout = dout.contiguous()
# The kernel supports passing in a pre-allocated dz (e.g., in case we want to fuse the
# backward of selective_scan_cuda with the backward of chunk).
# Here we just pass in None and dz will be allocated in the C++ code.
du, ddelta, dA, dB, dC, dD, ddelta_bias, *rest = selective_scan_cuda.bwd(
u, delta, A, B, C, D, z, delta_bias, dout, x, out, None, ctx.delta_softplus,
False # option to recompute out_z, not used here
)
dz = rest[0] if ctx.has_z else None
dB = dB.squeeze(1) if getattr(ctx, "squeeze_B", False) else dB
dC = dC.squeeze(1) if getattr(ctx, "squeeze_C", False) else dC
return (du, ddelta, dA, dB, dC,
dD if D is not None else None,
dz,
ddelta_bias if delta_bias is not None else None,
None,
None)
def selective_scan_fn(u, delta, A, B, C, D=None, z=None, delta_bias=None, delta_softplus=False,
return_last_state=False):
"""if return_last_state is True, returns (out, last_state)
last_state has shape (batch, dim, dstate). Note that the gradient of the last state is
not considered in the backward pass.
"""
return SelectiveScanFn.apply(u, delta, A, B, C, D, z, delta_bias, delta_softplus, return_last_state)
def selective_scan_ref(u, delta, A, B, C, D=None, z=None, delta_bias=None, delta_softplus=False,
return_last_state=False):
"""
u: r(B D L)
delta: r(B D L)
A: c(D N) or r(D N)
B: c(D N) or r(B N L) or r(B N 2L) or r(B G N L) or (B G N L)
C: c(D N) or r(B N L) or r(B N 2L) or r(B G N L) or (B G N L)
D: r(D)
z: r(B D L)
delta_bias: r(D), fp32
out: r(B D L)
last_state (optional): r(B D dstate) or c(B D dstate)
"""
dtype_in = u.dtype
u = u.float()
delta = delta.float()
if delta_bias is not None:
delta = delta + delta_bias[..., None].float()
if delta_softplus:
delta = F.softplus(delta)
batch, dim, dstate = u.shape[0], A.shape[0], A.shape[1]
is_variable_B = B.dim() >= 3
is_variable_C = C.dim() >= 3
if A.is_complex():
if is_variable_B:
B = torch.view_as_complex(rearrange(B.float(), "... (L two) -> ... L two", two=2))
if is_variable_C:
C = torch.view_as_complex(rearrange(C.float(), "... (L two) -> ... L two", two=2))
else:
B = B.float()
C = C.float()
x = A.new_zeros((batch, dim, dstate))
ys = []
deltaA = torch.exp(torch.einsum('bdl,dn->bdln', delta, A))
if not is_variable_B:
deltaB_u = torch.einsum('bdl,dn,bdl->bdln', delta, B, u)
else:
if B.dim() == 3:
deltaB_u = torch.einsum('bdl,bnl,bdl->bdln', delta, B, u)
else:
B = repeat(B, "B G N L -> B (G H) N L", H=dim // B.shape[1])
deltaB_u = torch.einsum('bdl,bdnl,bdl->bdln', delta, B, u)
if is_variable_C and C.dim() == 4:
C = repeat(C, "B G N L -> B (G H) N L", H=dim // C.shape[1])
last_state = None
for i in range(u.shape[2]):
x = deltaA[:, :, i] * x + deltaB_u[:, :, i]
if not is_variable_C:
y = torch.einsum('bdn,dn->bd', x, C)
else:
if C.dim() == 3:
y = torch.einsum('bdn,bn->bd', x, C[:, :, i])
else:
y = torch.einsum('bdn,bdn->bd', x, C[:, :, :, i])
if i == u.shape[2] - 1:
last_state = x
if y.is_complex():
y = y.real * 2
ys.append(y)
y = torch.stack(ys, dim=2) # (batch dim L)
out = y if D is None else y + u * rearrange(D, "d -> d 1")
if z is not None:
out = out * F.silu(z)
out = out.to(dtype=dtype_in)
return out if not return_last_state else (out, last_state)
class MambaInnerFnNoOutProj(torch.autograd.Function):
@staticmethod
@custom_fwd
def forward(ctx, xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight,
A, B=None, C=None, D=None, delta_bias=None, B_proj_bias=None,
C_proj_bias=None, delta_softplus=True, checkpoint_lvl=1):
"""
xz: (batch, dim, seqlen)
"""
assert checkpoint_lvl in [0, 1]
L = xz.shape[-1]
delta_rank = delta_proj_weight.shape[1]
d_state = A.shape[-1] * (1 if not A.is_complex() else 2)
if torch.is_autocast_enabled():
x_proj_weight = x_proj_weight.to(dtype=torch.get_autocast_gpu_dtype())
delta_proj_weight = delta_proj_weight.to(dtype=torch.get_autocast_gpu_dtype())
if xz.stride(-1) != 1:
xz = xz.contiguous()
conv1d_weight = rearrange(conv1d_weight, "d 1 w -> d w")
x, z = xz.chunk(2, dim=1)
conv1d_bias = conv1d_bias.contiguous() if conv1d_bias is not None else None
conv1d_out = causal_conv1d_cuda.causal_conv1d_fwd(x, conv1d_weight, conv1d_bias, True)
# We're being very careful here about the layout, to avoid extra transposes.
# We want delta to have d as the slowest moving dimension
# and L as the fastest moving dimension, since those are what the ssm_scan kernel expects.
x_dbl = F.linear(rearrange(conv1d_out, 'b d l -> (b l) d'), x_proj_weight) # (bl d)
delta = rearrange(delta_proj_weight @ x_dbl[:, :delta_rank].t(), "d (b l) -> b d l", l = L)
ctx.is_variable_B = B is None
ctx.is_variable_C = C is None
ctx.B_proj_bias_is_None = B_proj_bias is None
ctx.C_proj_bias_is_None = C_proj_bias is None
if B is None: # variable B
B = x_dbl[:, delta_rank:delta_rank + d_state] # (bl dstate)
if B_proj_bias is not None:
B = B + B_proj_bias.to(dtype=B.dtype)
if not A.is_complex():
# B = rearrange(B, "(b l) dstate -> b dstate l", l=L).contiguous()
B = rearrange(B, "(b l) dstate -> b 1 dstate l", l=L).contiguous()
else:
B = rearrange(B, "(b l) (dstate two) -> b 1 dstate (l two)", l=L, two=2).contiguous()
else:
if B.stride(-1) != 1:
B = B.contiguous()
if C is None: # variable C
C = x_dbl[:, -d_state:] # (bl dstate)
if C_proj_bias is not None:
C = C + C_proj_bias.to(dtype=C.dtype)
if not A.is_complex():
# C = rearrange(C, "(b l) dstate -> b dstate l", l=L).contiguous()
C = rearrange(C, "(b l) dstate -> b 1 dstate l", l=L).contiguous()
else:
C = rearrange(C, "(b l) (dstate two) -> b 1 dstate (l two)", l=L, two=2).contiguous()
else:
if C.stride(-1) != 1:
C = C.contiguous()
if D is not None:
D = D.contiguous()
out, scan_intermediates, out_z = selective_scan_cuda.fwd(
conv1d_out, delta, A, B, C, D, z, delta_bias, delta_softplus
)
ctx.delta_softplus = delta_softplus
ctx.checkpoint_lvl = checkpoint_lvl
if checkpoint_lvl >= 1: # Will recompute conv1d_out and delta in the backward pass
conv1d_out, delta = None, None
ctx.save_for_backward(xz, conv1d_weight, conv1d_bias, x_dbl, x_proj_weight,
delta_proj_weight, conv1d_out, delta,
A, B, C, D, delta_bias, scan_intermediates, out)
# return rearrange(out_z, "b d l -> b l d")
return out_z
@staticmethod
@custom_bwd
def backward(ctx, dout):
# dout: (batch, seqlen, dim)
(xz, conv1d_weight, conv1d_bias, x_dbl, x_proj_weight, delta_proj_weight,
conv1d_out, delta, A, B, C, D, delta_bias, scan_intermediates, out) = ctx.saved_tensors
L = xz.shape[-1]
delta_rank = delta_proj_weight.shape[1]
d_state = A.shape[-1] * (1 if not A.is_complex() else 2)
x, z = xz.chunk(2, dim=1)
if dout.stride(-1) != 1:
dout = dout.contiguous()
if ctx.checkpoint_lvl == 1:
conv1d_out = causal_conv1d_cuda.causal_conv1d_fwd(x, conv1d_weight, conv1d_bias, True)
delta = rearrange(delta_proj_weight @ x_dbl[:, :delta_rank].t(),
"d (b l) -> b d l", l = L)
# The kernel supports passing in a pre-allocated dz (e.g., in case we want to fuse the
# backward of selective_scan_cuda with the backward of chunk).
dxz = torch.empty_like(xz) # (batch, dim, seqlen)
dx, dz = dxz.chunk(2, dim=1)
# dout_y = rearrange(dout, "b l d -> b d l") # because no arrange at end of forward, so dout shape is b d l
dconv1d_out, ddelta, dA, dB, dC, dD, ddelta_bias, dz, out_z = selective_scan_cuda.bwd(
conv1d_out, delta, A, B, C, D, z, delta_bias, dout, scan_intermediates, out, dz,
ctx.delta_softplus,
True # option to recompute out_z
)
dD = dD if D is not None else None
dx_dbl = torch.empty_like(x_dbl)
dB_proj_bias = None
if ctx.is_variable_B:
if not A.is_complex():
dB = rearrange(dB, "b 1 dstate l -> (b l) dstate").contiguous()
else:
dB = rearrange(dB, "b 1 dstate (l two) -> (b l) (dstate two)", two=2).contiguous()
dB_proj_bias = dB.sum(0) if not ctx.B_proj_bias_is_None else None
dx_dbl[:, delta_rank:delta_rank + d_state] = dB # (bl d)
dB = None
dC_proj_bias = None
if ctx.is_variable_C:
if not A.is_complex():
dC = rearrange(dC, "b 1 dstate l -> (b l) dstate").contiguous()
else:
dC = rearrange(dC, "b 1 dstate (l two) -> (b l) (dstate two)", two=2).contiguous()
dC_proj_bias = dC.sum(0) if not ctx.C_proj_bias_is_None else None
dx_dbl[:, -d_state:] = dC # (bl d)
dC = None
ddelta = rearrange(ddelta, "b d l -> d (b l)")
ddelta_proj_weight = torch.einsum("dB,Br->dr", ddelta, x_dbl[:, :delta_rank])
dx_dbl[:, :delta_rank] = torch.einsum("dB,dr->Br", ddelta, delta_proj_weight)
dconv1d_out = rearrange(dconv1d_out, "b d l -> d (b l)")
dx_proj_weight = torch.einsum("Br,Bd->rd", dx_dbl, rearrange(conv1d_out, "b d l -> (b l) d"))
dconv1d_out = torch.addmm(dconv1d_out, x_proj_weight.t(), dx_dbl.t(), out=dconv1d_out)
dconv1d_out = rearrange(dconv1d_out, "d (b l) -> b d l", b=x.shape[0], l=x.shape[-1])
# The kernel supports passing in a pre-allocated dx (e.g., in case we want to fuse the
# backward of conv1d with the backward of chunk).
dx, dconv1d_weight, dconv1d_bias = causal_conv1d_cuda.causal_conv1d_bwd(
x, conv1d_weight, conv1d_bias, dconv1d_out, dx, True
)
dconv1d_bias = dconv1d_bias if conv1d_bias is not None else None
dconv1d_weight = rearrange(dconv1d_weight, "d w -> d 1 w")
return (dxz, dconv1d_weight, dconv1d_bias, dx_proj_weight, ddelta_proj_weight,
dA, dB, dC, dD,
ddelta_bias if delta_bias is not None else None,
dB_proj_bias, dC_proj_bias, None)
class MambaInnerFn(torch.autograd.Function):
@staticmethod
@custom_fwd
def forward(ctx, xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight,
out_proj_weight, out_proj_bias,
A, B=None, C=None, D=None, delta_bias=None, B_proj_bias=None,
C_proj_bias=None, delta_softplus=True, checkpoint_lvl=1):
"""
xz: (batch, dim, seqlen)
"""
assert checkpoint_lvl in [0, 1]
L = xz.shape[-1]
delta_rank = delta_proj_weight.shape[1]
d_state = A.shape[-1] * (1 if not A.is_complex() else 2)
if torch.is_autocast_enabled():
x_proj_weight = x_proj_weight.to(dtype=torch.get_autocast_gpu_dtype())
delta_proj_weight = delta_proj_weight.to(dtype=torch.get_autocast_gpu_dtype())
out_proj_weight = out_proj_weight.to(dtype=torch.get_autocast_gpu_dtype())
out_proj_bias = (out_proj_bias.to(dtype=torch.get_autocast_gpu_dtype())
if out_proj_bias is not None else None)
if xz.stride(-1) != 1:
xz = xz.contiguous()
conv1d_weight = rearrange(conv1d_weight, "d 1 w -> d w")
x, z = xz.chunk(2, dim=1)
conv1d_bias = conv1d_bias.contiguous() if conv1d_bias is not None else None
conv1d_out = causal_conv1d_cuda.causal_conv1d_fwd(x, conv1d_weight, conv1d_bias, True)
# We're being very careful here about the layout, to avoid extra transposes.
# We want delta to have d as the slowest moving dimension
# and L as the fastest moving dimension, since those are what the ssm_scan kernel expects.
x_dbl = F.linear(rearrange(conv1d_out, 'b d l -> (b l) d'), x_proj_weight) # (bl d)
delta = rearrange(delta_proj_weight @ x_dbl[:, :delta_rank].t(), "d (b l) -> b d l", l = L)
ctx.is_variable_B = B is None
ctx.is_variable_C = C is None
ctx.B_proj_bias_is_None = B_proj_bias is None
ctx.C_proj_bias_is_None = C_proj_bias is None
if B is None: # variable B
B = x_dbl[:, delta_rank:delta_rank + d_state] # (bl dstate)
if B_proj_bias is not None:
B = B + B_proj_bias.to(dtype=B.dtype)
if not A.is_complex():
# B = rearrange(B, "(b l) dstate -> b dstate l", l=L).contiguous()
B = rearrange(B, "(b l) dstate -> b 1 dstate l", l=L).contiguous()
else:
B = rearrange(B, "(b l) (dstate two) -> b 1 dstate (l two)", l=L, two=2).contiguous()
else:
if B.stride(-1) != 1:
B = B.contiguous()
if C is None: # variable C
C = x_dbl[:, -d_state:] # (bl dstate)
if C_proj_bias is not None:
C = C + C_proj_bias.to(dtype=C.dtype)
if not A.is_complex():
# C = rearrange(C, "(b l) dstate -> b dstate l", l=L).contiguous()
C = rearrange(C, "(b l) dstate -> b 1 dstate l", l=L).contiguous()
else:
C = rearrange(C, "(b l) (dstate two) -> b 1 dstate (l two)", l=L, two=2).contiguous()
else:
if C.stride(-1) != 1:
C = C.contiguous()
if D is not None:
D = D.contiguous()
out, scan_intermediates, out_z = selective_scan_cuda.fwd(
conv1d_out, delta, A, B, C, D, z, delta_bias, delta_softplus
)
ctx.delta_softplus = delta_softplus
ctx.out_proj_bias_is_None = out_proj_bias is None
ctx.checkpoint_lvl = checkpoint_lvl
if checkpoint_lvl >= 1: # Will recompute conv1d_out and delta in the backward pass
conv1d_out, delta = None, None
ctx.save_for_backward(xz, conv1d_weight, conv1d_bias, x_dbl, x_proj_weight,
delta_proj_weight, out_proj_weight, conv1d_out, delta,
A, B, C, D, delta_bias, scan_intermediates, out)
return F.linear(rearrange(out_z, "b d l -> b l d"), out_proj_weight, out_proj_bias)
@staticmethod
@custom_bwd
def backward(ctx, dout):
# dout: (batch, seqlen, dim)
(xz, conv1d_weight, conv1d_bias, x_dbl, x_proj_weight, delta_proj_weight, out_proj_weight,
conv1d_out, delta, A, B, C, D, delta_bias, scan_intermediates, out) = ctx.saved_tensors
L = xz.shape[-1]
delta_rank = delta_proj_weight.shape[1]
d_state = A.shape[-1] * (1 if not A.is_complex() else 2)
x, z = xz.chunk(2, dim=1)
if dout.stride(-1) != 1:
dout = dout.contiguous()
if ctx.checkpoint_lvl == 1:
conv1d_out = causal_conv1d_cuda.causal_conv1d_fwd(x, conv1d_weight, conv1d_bias, True)
delta = rearrange(delta_proj_weight @ x_dbl[:, :delta_rank].t(),
"d (b l) -> b d l", l = L)
# The kernel supports passing in a pre-allocated dz (e.g., in case we want to fuse the
# backward of selective_scan_cuda with the backward of chunk).
dxz = torch.empty_like(xz) # (batch, dim, seqlen)
dx, dz = dxz.chunk(2, dim=1)
dout = rearrange(dout, "b l e -> e (b l)")
dout_y = rearrange(out_proj_weight.t() @ dout, "d (b l) -> b d l", l=L)
dconv1d_out, ddelta, dA, dB, dC, dD, ddelta_bias, dz, out_z = selective_scan_cuda.bwd(
conv1d_out, delta, A, B, C, D, z, delta_bias, dout_y, scan_intermediates, out, dz,
ctx.delta_softplus,
True # option to recompute out_z
)
dout_proj_weight = torch.einsum("eB,dB->ed", dout, rearrange(out_z, "b d l -> d (b l)"))
dout_proj_bias = dout.sum(dim=(0, 1)) if not ctx.out_proj_bias_is_None else None
dD = dD if D is not None else None
dx_dbl = torch.empty_like(x_dbl)
dB_proj_bias = None
if ctx.is_variable_B:
if not A.is_complex():
dB = rearrange(dB, "b 1 dstate l -> (b l) dstate").contiguous()
else:
dB = rearrange(dB, "b 1 dstate (l two) -> (b l) (dstate two)", two=2).contiguous()
dB_proj_bias = dB.sum(0) if not ctx.B_proj_bias_is_None else None
dx_dbl[:, delta_rank:delta_rank + d_state] = dB # (bl d)
dB = None
dC_proj_bias = None
if ctx.is_variable_C:
if not A.is_complex():
dC = rearrange(dC, "b 1 dstate l -> (b l) dstate").contiguous()
else:
dC = rearrange(dC, "b 1 dstate (l two) -> (b l) (dstate two)", two=2).contiguous()
dC_proj_bias = dC.sum(0) if not ctx.C_proj_bias_is_None else None
dx_dbl[:, -d_state:] = dC # (bl d)
dC = None
ddelta = rearrange(ddelta, "b d l -> d (b l)")
ddelta_proj_weight = torch.einsum("dB,Br->dr", ddelta, x_dbl[:, :delta_rank])
dx_dbl[:, :delta_rank] = torch.einsum("dB,dr->Br", ddelta, delta_proj_weight)
dconv1d_out = rearrange(dconv1d_out, "b d l -> d (b l)")
dx_proj_weight = torch.einsum("Br,Bd->rd", dx_dbl, rearrange(conv1d_out, "b d l -> (b l) d"))
dconv1d_out = torch.addmm(dconv1d_out, x_proj_weight.t(), dx_dbl.t(), out=dconv1d_out)
dconv1d_out = rearrange(dconv1d_out, "d (b l) -> b d l", b=x.shape[0], l=x.shape[-1])
# The kernel supports passing in a pre-allocated dx (e.g., in case we want to fuse the
# backward of conv1d with the backward of chunk).
dx, dconv1d_weight, dconv1d_bias = causal_conv1d_cuda.causal_conv1d_bwd(
x, conv1d_weight, conv1d_bias, dconv1d_out, dx, True
)
dconv1d_bias = dconv1d_bias if conv1d_bias is not None else None
dconv1d_weight = rearrange(dconv1d_weight, "d w -> d 1 w")
return (dxz, dconv1d_weight, dconv1d_bias, dx_proj_weight, ddelta_proj_weight,
dout_proj_weight, dout_proj_bias,
dA, dB, dC, dD,
ddelta_bias if delta_bias is not None else None,
dB_proj_bias, dC_proj_bias, None)
class BiMambaInnerFn(torch.autograd.Function):
@staticmethod
@custom_fwd
def forward(ctx, xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight,
out_proj_weight, out_proj_bias,
A, A_b, B=None, C=None, D=None, delta_bias=None, B_proj_bias=None,
C_proj_bias=None, delta_softplus=True, checkpoint_lvl=1):
"""
xz: (batch, dim, seqlen)
"""
assert checkpoint_lvl in [0, 1]
L = xz.shape[-1]
delta_rank = delta_proj_weight.shape[1]
d_state = A.shape[-1] * (1 if not A.is_complex() else 2)
if torch.is_autocast_enabled():
x_proj_weight = x_proj_weight.to(dtype=torch.get_autocast_gpu_dtype())
delta_proj_weight = delta_proj_weight.to(dtype=torch.get_autocast_gpu_dtype())
out_proj_weight = out_proj_weight.to(dtype=torch.get_autocast_gpu_dtype())
out_proj_bias = (out_proj_bias.to(dtype=torch.get_autocast_gpu_dtype())
if out_proj_bias is not None else None)
if xz.stride(-1) != 1:
xz = xz.contiguous()
conv1d_weight = rearrange(conv1d_weight, "d 1 w -> d w")
x, z = xz.chunk(2, dim=1)
conv1d_bias = conv1d_bias.contiguous() if conv1d_bias is not None else None
conv1d_out = causal_conv1d_cuda.causal_conv1d_fwd(x, conv1d_weight, conv1d_bias, True)
# We're being very careful here about the layout, to avoid extra transposes.
# We want delta to have d as the slowest moving dimension
# and L as the fastest moving dimension, since those are what the ssm_scan kernel expects.
x_dbl = F.linear(rearrange(conv1d_out, 'b d l -> (b l) d'), x_proj_weight) # (bl d)
delta = rearrange(delta_proj_weight @ x_dbl[:, :delta_rank].t(), "d (b l) -> b d l", l = L)
ctx.is_variable_B = B is None
ctx.is_variable_C = C is None
ctx.B_proj_bias_is_None = B_proj_bias is None
ctx.C_proj_bias_is_None = C_proj_bias is None
if B is None: # variable B
B = x_dbl[:, delta_rank:delta_rank + d_state] # (bl dstate)
if B_proj_bias is not None:
B = B + B_proj_bias.to(dtype=B.dtype)
if not A.is_complex():
# B = rearrange(B, "(b l) dstate -> b dstate l", l=L).contiguous()
B = rearrange(B, "(b l) dstate -> b 1 dstate l", l=L).contiguous()
else:
B = rearrange(B, "(b l) (dstate two) -> b 1 dstate (l two)", l=L, two=2).contiguous()
else:
if B.stride(-1) != 1:
B = B.contiguous()
if C is None: # variable C
C = x_dbl[:, -d_state:] # (bl dstate)
if C_proj_bias is not None:
C = C + C_proj_bias.to(dtype=C.dtype)
if not A.is_complex():
# C = rearrange(C, "(b l) dstate -> b dstate l", l=L).contiguous()
C = rearrange(C, "(b l) dstate -> b 1 dstate l", l=L).contiguous()
else:
C = rearrange(C, "(b l) (dstate two) -> b 1 dstate (l two)", l=L, two=2).contiguous()
else:
if C.stride(-1) != 1:
C = C.contiguous()
if D is not None:
D = D.contiguous()
out_f, scan_intermediates_f, out_z_f = selective_scan_cuda.fwd(
conv1d_out, delta, A, B, C, D, z, delta_bias, delta_softplus
)
assert not A_b.is_complex(), "A should not be complex!!"
out_b, scan_intermediates_b, out_z_b = selective_scan_cuda.fwd(
conv1d_out.flip([-1]), delta.flip([-1]), A_b, B.flip([-1]), C.flip([-1]), D, z.flip([-1]), delta_bias, delta_softplus,
)
out_z = out_z_f + out_z_b.flip([-1])
ctx.delta_softplus = delta_softplus
ctx.out_proj_bias_is_None = out_proj_bias is None
ctx.checkpoint_lvl = checkpoint_lvl
if checkpoint_lvl >= 1: # Will recompute conv1d_out and delta in the backward pass
conv1d_out, delta = None, None
ctx.save_for_backward(xz, conv1d_weight, conv1d_bias, x_dbl, x_proj_weight,
delta_proj_weight, out_proj_weight, conv1d_out, delta,
A, A_b, B, C, D, delta_bias, scan_intermediates_f, scan_intermediates_b, out_f, out_b)
return F.linear(rearrange(out_z, "b d l -> b l d"), out_proj_weight, out_proj_bias)
@staticmethod
@custom_bwd
def backward(ctx, dout):
# dout: (batch, seqlen, dim)
(xz, conv1d_weight, conv1d_bias, x_dbl, x_proj_weight, delta_proj_weight, out_proj_weight,
conv1d_out, delta, A, A_b, B, C, D, delta_bias, scan_intermediates_f, scan_intermediates_b, out_f, out_b) = ctx.saved_tensors
L = xz.shape[-1]
delta_rank = delta_proj_weight.shape[1]
d_state = A.shape[-1] * (1 if not A.is_complex() else 2)
x, z = xz.chunk(2, dim=1)
if dout.stride(-1) != 1:
dout = dout.contiguous()
if ctx.checkpoint_lvl == 1:
conv1d_out = causal_conv1d_cuda.causal_conv1d_fwd(x, conv1d_weight, conv1d_bias, True)
delta = rearrange(delta_proj_weight @ x_dbl[:, :delta_rank].t(),
"d (b l) -> b d l", l = L)
# The kernel supports passing in a pre-allocated dz (e.g., in case we want to fuse the
# backward of selective_scan_cuda with the backward of chunk).
dxz = torch.empty_like(xz) # (batch, dim, seqlen)
dx, dz = dxz.chunk(2, dim=1)
dout = rearrange(dout, "b l e -> e (b l)")
dout_y = rearrange(out_proj_weight.t() @ dout, "d (b l) -> b d l", l=L)
dconv1d_out, ddelta, dA, dB, dC, dD, ddelta_bias, dz, out_z_f = selective_scan_cuda.bwd(
conv1d_out, delta, A, B, C, D, z, delta_bias, dout_y, scan_intermediates_f, out_f, dz,
ctx.delta_softplus,
True # option to recompute out_z
)
# flip one
dz_b = torch.empty_like(dz)
dconv1d_out_f_b, ddelta_f_b, dA_b, dB_f_b, dC_f_b, dD_b, ddelta_bias_b, dz_b, out_z_b = selective_scan_cuda.bwd(
conv1d_out.flip([-1]), delta.flip([-1]), A_b, B.flip([-1]), C.flip([-1]), D, z.flip([-1]), delta_bias, dout_y.flip([-1]), scan_intermediates_b, out_b, dz_b,
ctx.delta_softplus,
True # option to recompute out_z
)
dconv1d_out = dconv1d_out + dconv1d_out_f_b.flip([-1])
ddelta = ddelta + ddelta_f_b.flip([-1])
dB = dB + dB_f_b.flip([-1])
dC = dC + dC_f_b.flip([-1])
dD = dD + dD_b
ddelta_bias = ddelta_bias + ddelta_bias_b
dz = dz + dz_b.flip([-1])
out_z = out_z_f + out_z_b.flip([-1])
dout_proj_weight = torch.einsum("eB,dB->ed", dout, rearrange(out_z, "b d l -> d (b l)"))
dout_proj_bias = dout.sum(dim=(0, 1)) if not ctx.out_proj_bias_is_None else None
dD = dD if D is not None else None
dx_dbl = torch.empty_like(x_dbl)
dB_proj_bias = None
if ctx.is_variable_B:
if not A.is_complex():
dB = rearrange(dB, "b 1 dstate l -> (b l) dstate").contiguous()
else:
dB = rearrange(dB, "b 1 dstate (l two) -> (b l) (dstate two)", two=2).contiguous()
dB_proj_bias = dB.sum(0) if not ctx.B_proj_bias_is_None else None
dx_dbl[:, delta_rank:delta_rank + d_state] = dB # (bl d)
dB = None
dC_proj_bias = None
if ctx.is_variable_C:
if not A.is_complex():
dC = rearrange(dC, "b 1 dstate l -> (b l) dstate").contiguous()
else:
dC = rearrange(dC, "b 1 dstate (l two) -> (b l) (dstate two)", two=2).contiguous()
dC_proj_bias = dC.sum(0) if not ctx.C_proj_bias_is_None else None
dx_dbl[:, -d_state:] = dC # (bl d)
dC = None
ddelta = rearrange(ddelta, "b d l -> d (b l)")
ddelta_proj_weight = torch.einsum("dB,Br->dr", ddelta, x_dbl[:, :delta_rank])
dx_dbl[:, :delta_rank] = torch.einsum("dB,dr->Br", ddelta, delta_proj_weight)
dconv1d_out = rearrange(dconv1d_out, "b d l -> d (b l)")
dx_proj_weight = torch.einsum("Br,Bd->rd", dx_dbl, rearrange(conv1d_out, "b d l -> (b l) d"))
dconv1d_out = torch.addmm(dconv1d_out, x_proj_weight.t(), dx_dbl.t(), out=dconv1d_out)
dconv1d_out = rearrange(dconv1d_out, "d (b l) -> b d l", b=x.shape[0], l=x.shape[-1])
# The kernel supports passing in a pre-allocated dx (e.g., in case we want to fuse the
# backward of conv1d with the backward of chunk).
dx, dconv1d_weight, dconv1d_bias = causal_conv1d_cuda.causal_conv1d_bwd(
x, conv1d_weight, conv1d_bias, dconv1d_out, dx, True
)
dconv1d_bias = dconv1d_bias if conv1d_bias is not None else None
dconv1d_weight = rearrange(dconv1d_weight, "d w -> d 1 w")
return (dxz, dconv1d_weight, dconv1d_bias, dx_proj_weight, ddelta_proj_weight,
dout_proj_weight, dout_proj_bias,
dA, dA_b, dB, dC, dD,
ddelta_bias if delta_bias is not None else None,
dB_proj_bias, dC_proj_bias, None)
def mamba_inner_fn(
xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight,
out_proj_weight, out_proj_bias,
A, B=None, C=None, D=None, delta_bias=None, B_proj_bias=None,
C_proj_bias=None, delta_softplus=True
):
return MambaInnerFn.apply(xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight,
out_proj_weight, out_proj_bias,
A, B, C, D, delta_bias, B_proj_bias, C_proj_bias, delta_softplus)
def bimamba_inner_fn(
xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight,
out_proj_weight, out_proj_bias,
A, A_b, B=None, C=None, D=None, delta_bias=None, B_proj_bias=None,
C_proj_bias=None, delta_softplus=True
):
return BiMambaInnerFn.apply(xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight,
out_proj_weight, out_proj_bias,
A, A_b, B, C, D, delta_bias, B_proj_bias, C_proj_bias, delta_softplus)
def mamba_inner_fn_no_out_proj(
xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight,
A, B=None, C=None, D=None, delta_bias=None, B_proj_bias=None,
C_proj_bias=None, delta_softplus=True
):
return MambaInnerFnNoOutProj.apply(xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight,
A, B, C, D, delta_bias, B_proj_bias, C_proj_bias, delta_softplus)
def mamba_inner_ref(
xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight,
out_proj_weight, out_proj_bias,
A, B=None, C=None, D=None, delta_bias=None, B_proj_bias=None,
C_proj_bias=None, delta_softplus=True
):
L = xz.shape[-1]
delta_rank = delta_proj_weight.shape[1]
d_state = A.shape[-1] * (1 if not A.is_complex() else 2)
x, z = xz.chunk(2, dim=1)
x = causal_conv1d_fn(x, rearrange(conv1d_weight, "d 1 w -> d w"), conv1d_bias, "silu")
# We're being very careful here about the layout, to avoid extra transposes.
# We want delta to have d as the slowest moving dimension
# and L as the fastest moving dimension, since those are what the ssm_scan kernel expects.
x_dbl = F.linear(rearrange(x, 'b d l -> (b l) d'), x_proj_weight) # (bl d)
delta = delta_proj_weight @ x_dbl[:, :delta_rank].t()
delta = rearrange(delta, "d (b l) -> b d l", l=L)
if B is None: # variable B
B = x_dbl[:, delta_rank:delta_rank + d_state] # (bl d)
if B_proj_bias is not None:
B = B + B_proj_bias.to(dtype=B.dtype)
if not A.is_complex():
B = rearrange(B, "(b l) dstate -> b dstate l", l=L).contiguous()
else:
B = rearrange(B, "(b l) (dstate two) -> b dstate (l two)", l=L, two=2).contiguous()
if C is None: # variable B
C = x_dbl[:, -d_state:] # (bl d)
if C_proj_bias is not None:
C = C + C_proj_bias.to(dtype=C.dtype)
if not A.is_complex():
C = rearrange(C, "(b l) dstate -> b dstate l", l=L).contiguous()
else:
C = rearrange(C, "(b l) (dstate two) -> b dstate (l two)", l=L, two=2).contiguous()
y = selective_scan_fn(x, delta, A, B, C, D, z=z, delta_bias=delta_bias, delta_softplus=True)
return F.linear(rearrange(y, "b d l -> b l d"), out_proj_weight, out_proj_bias)
def bimamba_inner_ref(
xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight,
out_proj_weight, out_proj_bias,
A, A_b, B=None, C=None, D=None, delta_bias=None, B_proj_bias=None,
C_proj_bias=None, delta_softplus=True
):
L = xz.shape[-1]
delta_rank = delta_proj_weight.shape[1]
d_state = A.shape[-1] * (1 if not A.is_complex() else 2)
x, z = xz.chunk(2, dim=1)
x = causal_conv1d_fn(x, rearrange(conv1d_weight, "d 1 w -> d w"), conv1d_bias, "silu")
# We're being very careful here about the layout, to avoid extra transposes.
# We want delta to have d as the slowest moving dimension
# and L as the fastest moving dimension, since those are what the ssm_scan kernel expects.
x_dbl = F.linear(rearrange(x, 'b d l -> (b l) d'), x_proj_weight) # (bl d)
delta = delta_proj_weight @ x_dbl[:, :delta_rank].t()
delta = rearrange(delta, "d (b l) -> b d l", l=L)
if B is None: # variable B
B = x_dbl[:, delta_rank:delta_rank + d_state] # (bl d)
if B_proj_bias is not None:
B = B + B_proj_bias.to(dtype=B.dtype)
if not A.is_complex():
B = rearrange(B, "(b l) dstate -> b dstate l", l=L).contiguous()
else:
B = rearrange(B, "(b l) (dstate two) -> b dstate (l two)", l=L, two=2).contiguous()
if C is None: # variable B
C = x_dbl[:, -d_state:] # (bl d)
if C_proj_bias is not None:
C = C + C_proj_bias.to(dtype=C.dtype)
if not A.is_complex():
C = rearrange(C, "(b l) dstate -> b dstate l", l=L).contiguous()
else:
C = rearrange(C, "(b l) (dstate two) -> b dstate (l two)", l=L, two=2).contiguous()
y = selective_scan_fn(x, delta, A, B, C, D, z=z, delta_bias=delta_bias, delta_softplus=True)
y_b = selective_scan_fn(x.flip([-1]), delta.flip([-1]), A_b, B.flip([-1]), C.flip([-1]), D, z.flip([-1]), delta_bias, delta_softplus=True)
y = y + y_b.flip([-1])
return F.linear(rearrange(y, "b d l -> b l d"), out_proj_weight, out_proj_bias)