Spaces:
Runtime error
Runtime error
| # Copyright (c) 2023, Albert Gu, Tri Dao. | |
| import math | |
| from functools import partial | |
| from collections import namedtuple | |
| import torch | |
| import torch.nn as nn | |
| from mamba_ssm.modules.mamba_simple import Mamba, Block | |
| from mamba_ssm.utils.generation import GenerationMixin | |
| from mamba_ssm.utils.hf import load_config_hf, load_state_dict_hf | |
| try: | |
| from mamba_ssm.ops.triton.layernorm import RMSNorm, layer_norm_fn, rms_norm_fn | |
| except ImportError: | |
| RMSNorm, layer_norm_fn, rms_norm_fn = None, None, None | |
| def create_block( | |
| d_model, | |
| ssm_cfg=None, | |
| norm_epsilon=1e-5, | |
| rms_norm=False, | |
| residual_in_fp32=False, | |
| fused_add_norm=False, | |
| layer_idx=None, | |
| device=None, | |
| dtype=None, | |
| ): | |
| if ssm_cfg is None: | |
| ssm_cfg = {} | |
| factory_kwargs = {"device": device, "dtype": dtype} | |
| mixer_cls = partial(Mamba, layer_idx=layer_idx, **ssm_cfg, **factory_kwargs) | |
| norm_cls = partial( | |
| nn.LayerNorm if not rms_norm else RMSNorm, eps=norm_epsilon, **factory_kwargs | |
| ) | |
| block = Block( | |
| d_model, | |
| mixer_cls, | |
| norm_cls=norm_cls, | |
| fused_add_norm=fused_add_norm, | |
| residual_in_fp32=residual_in_fp32, | |
| ) | |
| block.layer_idx = layer_idx | |
| return block | |
| # https://github.com/huggingface/transformers/blob/c28d04e9e252a1a099944e325685f14d242ecdcd/src/transformers/models/gpt2/modeling_gpt2.py#L454 | |
| def _init_weights( | |
| module, | |
| n_layer, | |
| initializer_range=0.02, # Now only used for embedding layer. | |
| rescale_prenorm_residual=True, | |
| n_residuals_per_layer=1, # Change to 2 if we have MLP | |
| ): | |
| if isinstance(module, nn.Linear): | |
| if module.bias is not None: | |
| if not getattr(module.bias, "_no_reinit", False): | |
| nn.init.zeros_(module.bias) | |
| elif isinstance(module, nn.Embedding): | |
| nn.init.normal_(module.weight, std=initializer_range) | |
| if rescale_prenorm_residual: | |
| # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme: | |
| # > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale | |
| # > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers. | |
| # > -- GPT-2 :: https://openai.com/blog/better-language-models/ | |
| # | |
| # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py | |
| for name, p in module.named_parameters(): | |
| if name in ["out_proj.weight", "fc2.weight"]: | |
| # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block | |
| # Following Pytorch init, except scale by 1/sqrt(2 * n_layer) | |
| # We need to reinit p since this code could be called multiple times | |
| # Having just p *= scale would repeatedly scale it down | |
| nn.init.kaiming_uniform_(p, a=math.sqrt(5)) | |
| with torch.no_grad(): | |
| p /= math.sqrt(n_residuals_per_layer * n_layer) | |
| class MixerModel(nn.Module): | |
| def __init__( | |
| self, | |
| d_model: int, | |
| n_layer: int, | |
| vocab_size: int, | |
| ssm_cfg=None, | |
| norm_epsilon: float = 1e-5, | |
| rms_norm: bool = False, | |
| initializer_cfg=None, | |
| fused_add_norm=False, | |
| residual_in_fp32=False, | |
| device=None, | |
| dtype=None, | |
| ) -> None: | |
| factory_kwargs = {"device": device, "dtype": dtype} | |
| super().__init__() | |
| self.residual_in_fp32 = residual_in_fp32 | |
| self.embedding = nn.Embedding(vocab_size, d_model, **factory_kwargs) | |
| # We change the order of residual and layer norm: | |
| # Instead of LN -> Attn / MLP -> Add, we do: | |
| # Add -> LN -> Attn / MLP / Mixer, returning both the residual branch (output of Add) and | |
| # the main branch (output of MLP / Mixer). The model definition is unchanged. | |
| # This is for performance reason: we can fuse add + layer_norm. | |
| self.fused_add_norm = fused_add_norm | |
| if self.fused_add_norm: | |
| if layer_norm_fn is None or rms_norm_fn is None: | |
| raise ImportError("Failed to import Triton LayerNorm / RMSNorm kernels") | |
| self.layers = nn.ModuleList( | |
| [ | |
| create_block( | |
| d_model, | |
| ssm_cfg=ssm_cfg, | |
| norm_epsilon=norm_epsilon, | |
| rms_norm=rms_norm, | |
| residual_in_fp32=residual_in_fp32, | |
| fused_add_norm=fused_add_norm, | |
| layer_idx=i, | |
| **factory_kwargs, | |
| ) | |
| for i in range(n_layer) | |
| ] | |
| ) | |
| self.norm_f = (nn.LayerNorm if not rms_norm else RMSNorm)( | |
| d_model, eps=norm_epsilon, **factory_kwargs | |
| ) | |
| self.apply( | |
| partial( | |
| _init_weights, | |
| n_layer=n_layer, | |
| **(initializer_cfg if initializer_cfg is not None else {}), | |
| ) | |
| ) | |
| def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs): | |
| return { | |
| i: layer.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs) | |
| for i, layer in enumerate(self.layers) | |
| } | |
| def forward(self, input_ids, inference_params=None): | |
| hidden_states = self.embedding(input_ids) | |
| residual = None | |
| for layer in self.layers: | |
| hidden_states, residual = layer( | |
| hidden_states, residual, inference_params=inference_params | |
| ) | |
| if not self.fused_add_norm: | |
| residual = (hidden_states + residual) if residual is not None else hidden_states | |
| hidden_states = self.norm_f(residual.to(dtype=self.norm_f.weight.dtype)) | |
| else: | |
| # Set prenorm=False here since we don't need the residual | |
| fused_add_norm_fn = rms_norm_fn if isinstance(self.norm_f, RMSNorm) else layer_norm_fn | |
| hidden_states = fused_add_norm_fn( | |
| hidden_states, | |
| self.norm_f.weight, | |
| self.norm_f.bias, | |
| eps=self.norm_f.eps, | |
| residual=residual, | |
| prenorm=False, | |
| residual_in_fp32=self.residual_in_fp32, | |
| ) | |
| return hidden_states | |
| class MambaLMHeadModel(nn.Module, GenerationMixin): | |
| def __init__( | |
| self, | |
| d_model: int, | |
| n_layer: int, | |
| vocab_size: int, | |
| initializer_cfg=None, | |
| pad_vocab_size_multiple: int = 1, | |
| device=None, | |
| dtype=None, | |
| **backbone_kwargs, | |
| ) -> None: | |
| factory_kwargs = {"device": device, "dtype": dtype} | |
| super().__init__() | |
| if vocab_size % pad_vocab_size_multiple != 0: | |
| vocab_size += pad_vocab_size_multiple - (vocab_size % pad_vocab_size_multiple) | |
| self.backbone = MixerModel( | |
| d_model=d_model, | |
| n_layer=n_layer, | |
| vocab_size=vocab_size, | |
| initializer_cfg=initializer_cfg, | |
| **backbone_kwargs, | |
| **factory_kwargs, | |
| ) | |
| self.lm_head = nn.Linear(d_model, vocab_size, bias=False, **factory_kwargs) | |
| # Initialize weights and apply final processing | |
| self.apply( | |
| partial( | |
| _init_weights, | |
| n_layer=n_layer, | |
| **(initializer_cfg if initializer_cfg is not None else {}), | |
| ) | |
| ) | |
| self.tie_weights() | |
| def tie_weights(self): | |
| self.lm_head.weight = self.backbone.embedding.weight | |
| def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs): | |
| return self.backbone.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs) | |
| def forward(self, input_ids, position_ids=None, inference_params=None, num_last_tokens=0): | |
| """ | |
| "position_ids" is just to be compatible with Transformer generation. We don't use it. | |
| num_last_tokens: if > 0, only return the logits for the last n tokens | |
| """ | |
| hidden_states = self.backbone(input_ids, inference_params=inference_params) | |
| if num_last_tokens > 0: | |
| hidden_states = hidden_states[:, -num_last_tokens:] | |
| lm_logits = self.lm_head(hidden_states) | |
| CausalLMOutput = namedtuple("CausalLMOutput", ["logits"]) | |
| return CausalLMOutput(logits=lm_logits) | |
| def from_pretrained(cls, pretrained_model_name, device=None, dtype=None, **kwargs): | |
| config = load_config_hf(pretrained_model_name) | |
| model = cls(**config, device=device, dtype=dtype, **kwargs) | |
| model.load_state_dict(load_state_dict_hf(pretrained_model_name, device=device, dtype=dtype)) | |
| return model | |