Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2023, Albert Gu, Tri Dao. | |
import math | |
from functools import partial | |
from collections import namedtuple | |
import torch | |
import torch.nn as nn | |
from mamba_ssm.modules.mamba_simple import Mamba, Block | |
from mamba_ssm.utils.generation import GenerationMixin | |
from mamba_ssm.utils.hf import load_config_hf, load_state_dict_hf | |
try: | |
from mamba_ssm.ops.triton.layernorm import RMSNorm, layer_norm_fn, rms_norm_fn | |
except ImportError: | |
RMSNorm, layer_norm_fn, rms_norm_fn = None, None, None | |
def create_block( | |
d_model, | |
ssm_cfg=None, | |
norm_epsilon=1e-5, | |
rms_norm=False, | |
residual_in_fp32=False, | |
fused_add_norm=False, | |
layer_idx=None, | |
device=None, | |
dtype=None, | |
): | |
if ssm_cfg is None: | |
ssm_cfg = {} | |
factory_kwargs = {"device": device, "dtype": dtype} | |
mixer_cls = partial(Mamba, layer_idx=layer_idx, **ssm_cfg, **factory_kwargs) | |
norm_cls = partial( | |
nn.LayerNorm if not rms_norm else RMSNorm, eps=norm_epsilon, **factory_kwargs | |
) | |
block = Block( | |
d_model, | |
mixer_cls, | |
norm_cls=norm_cls, | |
fused_add_norm=fused_add_norm, | |
residual_in_fp32=residual_in_fp32, | |
) | |
block.layer_idx = layer_idx | |
return block | |
# https://github.com/huggingface/transformers/blob/c28d04e9e252a1a099944e325685f14d242ecdcd/src/transformers/models/gpt2/modeling_gpt2.py#L454 | |
def _init_weights( | |
module, | |
n_layer, | |
initializer_range=0.02, # Now only used for embedding layer. | |
rescale_prenorm_residual=True, | |
n_residuals_per_layer=1, # Change to 2 if we have MLP | |
): | |
if isinstance(module, nn.Linear): | |
if module.bias is not None: | |
if not getattr(module.bias, "_no_reinit", False): | |
nn.init.zeros_(module.bias) | |
elif isinstance(module, nn.Embedding): | |
nn.init.normal_(module.weight, std=initializer_range) | |
if rescale_prenorm_residual: | |
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme: | |
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale | |
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers. | |
# > -- GPT-2 :: https://openai.com/blog/better-language-models/ | |
# | |
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py | |
for name, p in module.named_parameters(): | |
if name in ["out_proj.weight", "fc2.weight"]: | |
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block | |
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer) | |
# We need to reinit p since this code could be called multiple times | |
# Having just p *= scale would repeatedly scale it down | |
nn.init.kaiming_uniform_(p, a=math.sqrt(5)) | |
with torch.no_grad(): | |
p /= math.sqrt(n_residuals_per_layer * n_layer) | |
class MixerModel(nn.Module): | |
def __init__( | |
self, | |
d_model: int, | |
n_layer: int, | |
vocab_size: int, | |
ssm_cfg=None, | |
norm_epsilon: float = 1e-5, | |
rms_norm: bool = False, | |
initializer_cfg=None, | |
fused_add_norm=False, | |
residual_in_fp32=False, | |
device=None, | |
dtype=None, | |
) -> None: | |
factory_kwargs = {"device": device, "dtype": dtype} | |
super().__init__() | |
self.residual_in_fp32 = residual_in_fp32 | |
self.embedding = nn.Embedding(vocab_size, d_model, **factory_kwargs) | |
# We change the order of residual and layer norm: | |
# Instead of LN -> Attn / MLP -> Add, we do: | |
# Add -> LN -> Attn / MLP / Mixer, returning both the residual branch (output of Add) and | |
# the main branch (output of MLP / Mixer). The model definition is unchanged. | |
# This is for performance reason: we can fuse add + layer_norm. | |
self.fused_add_norm = fused_add_norm | |
if self.fused_add_norm: | |
if layer_norm_fn is None or rms_norm_fn is None: | |
raise ImportError("Failed to import Triton LayerNorm / RMSNorm kernels") | |
self.layers = nn.ModuleList( | |
[ | |
create_block( | |
d_model, | |
ssm_cfg=ssm_cfg, | |
norm_epsilon=norm_epsilon, | |
rms_norm=rms_norm, | |
residual_in_fp32=residual_in_fp32, | |
fused_add_norm=fused_add_norm, | |
layer_idx=i, | |
**factory_kwargs, | |
) | |
for i in range(n_layer) | |
] | |
) | |
self.norm_f = (nn.LayerNorm if not rms_norm else RMSNorm)( | |
d_model, eps=norm_epsilon, **factory_kwargs | |
) | |
self.apply( | |
partial( | |
_init_weights, | |
n_layer=n_layer, | |
**(initializer_cfg if initializer_cfg is not None else {}), | |
) | |
) | |
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs): | |
return { | |
i: layer.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs) | |
for i, layer in enumerate(self.layers) | |
} | |
def forward(self, input_ids, inference_params=None): | |
hidden_states = self.embedding(input_ids) | |
residual = None | |
for layer in self.layers: | |
hidden_states, residual = layer( | |
hidden_states, residual, inference_params=inference_params | |
) | |
if not self.fused_add_norm: | |
residual = (hidden_states + residual) if residual is not None else hidden_states | |
hidden_states = self.norm_f(residual.to(dtype=self.norm_f.weight.dtype)) | |
else: | |
# Set prenorm=False here since we don't need the residual | |
fused_add_norm_fn = rms_norm_fn if isinstance(self.norm_f, RMSNorm) else layer_norm_fn | |
hidden_states = fused_add_norm_fn( | |
hidden_states, | |
self.norm_f.weight, | |
self.norm_f.bias, | |
eps=self.norm_f.eps, | |
residual=residual, | |
prenorm=False, | |
residual_in_fp32=self.residual_in_fp32, | |
) | |
return hidden_states | |
class MambaLMHeadModel(nn.Module, GenerationMixin): | |
def __init__( | |
self, | |
d_model: int, | |
n_layer: int, | |
vocab_size: int, | |
initializer_cfg=None, | |
pad_vocab_size_multiple: int = 1, | |
device=None, | |
dtype=None, | |
**backbone_kwargs, | |
) -> None: | |
factory_kwargs = {"device": device, "dtype": dtype} | |
super().__init__() | |
if vocab_size % pad_vocab_size_multiple != 0: | |
vocab_size += pad_vocab_size_multiple - (vocab_size % pad_vocab_size_multiple) | |
self.backbone = MixerModel( | |
d_model=d_model, | |
n_layer=n_layer, | |
vocab_size=vocab_size, | |
initializer_cfg=initializer_cfg, | |
**backbone_kwargs, | |
**factory_kwargs, | |
) | |
self.lm_head = nn.Linear(d_model, vocab_size, bias=False, **factory_kwargs) | |
# Initialize weights and apply final processing | |
self.apply( | |
partial( | |
_init_weights, | |
n_layer=n_layer, | |
**(initializer_cfg if initializer_cfg is not None else {}), | |
) | |
) | |
self.tie_weights() | |
def tie_weights(self): | |
self.lm_head.weight = self.backbone.embedding.weight | |
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs): | |
return self.backbone.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs) | |
def forward(self, input_ids, position_ids=None, inference_params=None, num_last_tokens=0): | |
""" | |
"position_ids" is just to be compatible with Transformer generation. We don't use it. | |
num_last_tokens: if > 0, only return the logits for the last n tokens | |
""" | |
hidden_states = self.backbone(input_ids, inference_params=inference_params) | |
if num_last_tokens > 0: | |
hidden_states = hidden_states[:, -num_last_tokens:] | |
lm_logits = self.lm_head(hidden_states) | |
CausalLMOutput = namedtuple("CausalLMOutput", ["logits"]) | |
return CausalLMOutput(logits=lm_logits) | |
def from_pretrained(cls, pretrained_model_name, device=None, dtype=None, **kwargs): | |
config = load_config_hf(pretrained_model_name) | |
model = cls(**config, device=device, dtype=dtype, **kwargs) | |
model.load_state_dict(load_state_dict_hf(pretrained_model_name, device=device, dtype=dtype)) | |
return model | |