Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,978 Bytes
29a3d5a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 |
/******************************************************************************
* Copyright (c) 2023, Tri Dao.
******************************************************************************/
#pragma once
#include <cub/config.cuh>
#include <cub/util_ptx.cuh>
#include <cub/util_type.cuh>
#include <cub/block/block_raking_layout.cuh>
// #include <cub/detail/uninitialized_copy.cuh>
#include "uninitialized_copy.cuh"
/**
* Perform a reverse sequential reduction over \p LENGTH elements of the \p input array. The aggregate is returned.
*/
template <
int LENGTH,
typename T,
typename ReductionOp>
__device__ __forceinline__ T ThreadReverseReduce(const T (&input)[LENGTH], ReductionOp reduction_op) {
static_assert(LENGTH > 0);
T retval = input[LENGTH - 1];
#pragma unroll
for (int i = LENGTH - 2; i >= 0; --i) { retval = reduction_op(retval, input[i]); }
return retval;
}
/**
* Perform a sequential inclusive postfix reverse scan over the statically-sized \p input array, seeded with the specified \p postfix. The aggregate is returned.
*/
template <
int LENGTH,
typename T,
typename ScanOp>
__device__ __forceinline__ T ThreadReverseScanInclusive(
const T (&input)[LENGTH],
T (&output)[LENGTH],
ScanOp scan_op,
const T postfix)
{
T inclusive = postfix;
#pragma unroll
for (int i = LENGTH - 1; i >= 0; --i) {
inclusive = scan_op(inclusive, input[i]);
output[i] = inclusive;
}
}
/**
* Perform a sequential exclusive postfix reverse scan over the statically-sized \p input array, seeded with the specified \p postfix. The aggregate is returned.
*/
template <
int LENGTH,
typename T,
typename ScanOp>
__device__ __forceinline__ T ThreadReverseScanExclusive(
const T (&input)[LENGTH],
T (&output)[LENGTH],
ScanOp scan_op,
const T postfix)
{
// Careful, output maybe be aliased to input
T exclusive = postfix;
T inclusive;
#pragma unroll
for (int i = LENGTH - 1; i >= 0; --i) {
inclusive = scan_op(exclusive, input[i]);
output[i] = exclusive;
exclusive = inclusive;
}
return inclusive;
}
/**
* \brief WarpReverseScan provides SHFL-based variants of parallel postfix scan of items partitioned across a CUDA thread warp.
*
* LOGICAL_WARP_THREADS must be a power-of-two
*/
template <
typename T, ///< Data type being scanned
int LOGICAL_WARP_THREADS ///< Number of threads per logical warp
>
struct WarpReverseScan {
//---------------------------------------------------------------------
// Constants and type definitions
//---------------------------------------------------------------------
/// Whether the logical warp size and the PTX warp size coincide
static constexpr bool IS_ARCH_WARP = (LOGICAL_WARP_THREADS == CUB_WARP_THREADS(0));
/// The number of warp scan steps
static constexpr int STEPS = cub::Log2<LOGICAL_WARP_THREADS>::VALUE;
static_assert(LOGICAL_WARP_THREADS == 1 << STEPS);
//---------------------------------------------------------------------
// Thread fields
//---------------------------------------------------------------------
/// Lane index in logical warp
unsigned int lane_id;
/// Logical warp index in 32-thread physical warp
unsigned int warp_id;
/// 32-thread physical warp member mask of logical warp
unsigned int member_mask;
//---------------------------------------------------------------------
// Construction
//---------------------------------------------------------------------
/// Constructor
explicit __device__ __forceinline__
WarpReverseScan()
: lane_id(cub::LaneId())
, warp_id(IS_ARCH_WARP ? 0 : (lane_id / LOGICAL_WARP_THREADS))
, member_mask(cub::WarpMask<LOGICAL_WARP_THREADS>(warp_id))
{
if (!IS_ARCH_WARP) {
lane_id = lane_id % LOGICAL_WARP_THREADS;
}
}
/// Broadcast
__device__ __forceinline__ T Broadcast(
T input, ///< [in] The value to broadcast
int src_lane) ///< [in] Which warp lane is to do the broadcasting
{
return cub::ShuffleIndex<LOGICAL_WARP_THREADS>(input, src_lane, member_mask);
}
/// Inclusive scan
template <typename ScanOpT>
__device__ __forceinline__ void InclusiveReverseScan(
T input, ///< [in] Calling thread's input item.
T &inclusive_output, ///< [out] Calling thread's output item. May be aliased with \p input.
ScanOpT scan_op) ///< [in] Binary scan operator
{
inclusive_output = input;
#pragma unroll
for (int STEP = 0; STEP < STEPS; STEP++) {
int offset = 1 << STEP;
T temp = cub::ShuffleDown<LOGICAL_WARP_THREADS>(
inclusive_output, offset, LOGICAL_WARP_THREADS - 1, member_mask
);
// Perform scan op if from a valid peer
inclusive_output = static_cast<int>(lane_id) >= LOGICAL_WARP_THREADS - offset
? inclusive_output : scan_op(temp, inclusive_output);
}
}
/// Exclusive scan
// Get exclusive from inclusive
template <typename ScanOpT>
__device__ __forceinline__ void ExclusiveReverseScan(
T input, ///< [in] Calling thread's input item.
T &exclusive_output, ///< [out] Calling thread's output item. May be aliased with \p input.
ScanOpT scan_op, ///< [in] Binary scan operator
T &warp_aggregate) ///< [out] Warp-wide aggregate reduction of input items.
{
T inclusive_output;
InclusiveReverseScan(input, inclusive_output, scan_op);
warp_aggregate = cub::ShuffleIndex<LOGICAL_WARP_THREADS>(inclusive_output, 0, member_mask);
// initial value unknown
exclusive_output = cub::ShuffleDown<LOGICAL_WARP_THREADS>(
inclusive_output, 1, LOGICAL_WARP_THREADS - 1, member_mask
);
}
/**
* \brief Computes both inclusive and exclusive reverse scans using the specified binary scan functor across the calling warp. Because no initial value is supplied, the \p exclusive_output computed for the last <em>warp-lane</em> is undefined.
*/
template <typename ScanOpT>
__device__ __forceinline__ void ReverseScan(
T input, ///< [in] Calling thread's input item.
T &inclusive_output, ///< [out] Calling thread's inclusive-scan output item.
T &exclusive_output, ///< [out] Calling thread's exclusive-scan output item.
ScanOpT scan_op) ///< [in] Binary scan operator
{
InclusiveReverseScan(input, inclusive_output, scan_op);
// initial value unknown
exclusive_output = cub::ShuffleDown<LOGICAL_WARP_THREADS>(
inclusive_output, 1, LOGICAL_WARP_THREADS - 1, member_mask
);
}
};
/**
* \brief BlockReverseScan provides variants of raking-based parallel postfix scan across a CUDA thread block.
*/
template <
typename T, ///< Data type being scanned
int BLOCK_DIM_X, ///< The thread block length in threads along the X dimension
bool MEMOIZE=false ///< Whether or not to buffer outer raking scan partials to incur fewer shared memory reads at the expense of higher register pressure
>
struct BlockReverseScan {
//---------------------------------------------------------------------
// Types and constants
//---------------------------------------------------------------------
/// Constants
/// The thread block size in threads
static constexpr int BLOCK_THREADS = BLOCK_DIM_X;
/// Layout type for padded thread block raking grid
using BlockRakingLayout = cub::BlockRakingLayout<T, BLOCK_THREADS>;
// The number of reduction elements is not a multiple of the number of raking threads for now
static_assert(BlockRakingLayout::UNGUARDED);
/// Number of raking threads
static constexpr int RAKING_THREADS = BlockRakingLayout::RAKING_THREADS;
/// Number of raking elements per warp synchronous raking thread
static constexpr int SEGMENT_LENGTH = BlockRakingLayout::SEGMENT_LENGTH;
/// Cooperative work can be entirely warp synchronous
static constexpr bool WARP_SYNCHRONOUS = (int(BLOCK_THREADS) == int(RAKING_THREADS));
/// WarpReverseScan utility type
using WarpReverseScan = WarpReverseScan<T, RAKING_THREADS>;
/// Shared memory storage layout type
struct _TempStorage {
typename BlockRakingLayout::TempStorage raking_grid; ///< Padded thread block raking grid
};
/// Alias wrapper allowing storage to be unioned
struct TempStorage : cub::Uninitialized<_TempStorage> {};
//---------------------------------------------------------------------
// Per-thread fields
//---------------------------------------------------------------------
// Thread fields
_TempStorage &temp_storage;
unsigned int linear_tid;
T cached_segment[SEGMENT_LENGTH];
//---------------------------------------------------------------------
// Utility methods
//---------------------------------------------------------------------
/// Performs upsweep raking reduction, returning the aggregate
template <typename ScanOp>
__device__ __forceinline__ T Upsweep(ScanOp scan_op) {
T *smem_raking_ptr = BlockRakingLayout::RakingPtr(temp_storage.raking_grid, linear_tid);
// Read data into registers
#pragma unroll
for (int i = 0; i < SEGMENT_LENGTH; ++i) { cached_segment[i] = smem_raking_ptr[i]; }
T raking_partial = cached_segment[SEGMENT_LENGTH - 1];
#pragma unroll
for (int i = SEGMENT_LENGTH - 2; i >= 0; --i) {
raking_partial = scan_op(raking_partial, cached_segment[i]);
}
return raking_partial;
}
/// Performs exclusive downsweep raking scan
template <typename ScanOp>
__device__ __forceinline__ void ExclusiveDownsweep(
ScanOp scan_op,
T raking_partial)
{
T *smem_raking_ptr = BlockRakingLayout::RakingPtr(temp_storage.raking_grid, linear_tid);
// Read data back into registers
if (!MEMOIZE) {
#pragma unroll
for (int i = 0; i < SEGMENT_LENGTH; ++i) { cached_segment[i] = smem_raking_ptr[i]; }
}
ThreadReverseScanExclusive(cached_segment, cached_segment, scan_op, raking_partial);
// Write data back to smem
#pragma unroll
for (int i = 0; i < SEGMENT_LENGTH; ++i) { smem_raking_ptr[i] = cached_segment[i]; }
}
//---------------------------------------------------------------------
// Constructors
//---------------------------------------------------------------------
/// Constructor
__device__ __forceinline__ BlockReverseScan(
TempStorage &temp_storage)
:
temp_storage(temp_storage.Alias()),
linear_tid(cub::RowMajorTid(BLOCK_DIM_X, 1, 1))
{}
/// Computes an exclusive thread block-wide postfix scan using the specified binary \p scan_op functor. Each thread contributes one input element. the call-back functor \p block_postfix_callback_op is invoked by the first warp in the block, and the value returned by <em>lane</em><sub>0</sub> in that warp is used as the "seed" value that logically postfixes the thread block's scan inputs. Also provides every thread with the block-wide \p block_aggregate of all inputs.
template <
typename ScanOp,
typename BlockPostfixCallbackOp>
__device__ __forceinline__ void ExclusiveReverseScan(
T input, ///< [in] Calling thread's input item
T &exclusive_output, ///< [out] Calling thread's output item (may be aliased to \p input)
ScanOp scan_op, ///< [in] Binary scan operator
BlockPostfixCallbackOp &block_postfix_callback_op) ///< [in-out] <b>[<em>warp</em><sub>0</sub> only]</b> Call-back functor for specifying a thread block-wide postfix to be applied to all inputs.
{
if (WARP_SYNCHRONOUS) {
// Short-circuit directly to warp-synchronous scan
T block_aggregate;
WarpReverseScan warp_scan;
warp_scan.ExclusiveReverseScan(input, exclusive_output, scan_op, block_aggregate);
// Obtain warp-wide postfix in lane0, then broadcast to other lanes
T block_postfix = block_postfix_callback_op(block_aggregate);
block_postfix = warp_scan.Broadcast(block_postfix, 0);
exclusive_output = linear_tid == BLOCK_THREADS - 1 ? block_postfix : scan_op(block_postfix, exclusive_output);
} else {
// Place thread partial into shared memory raking grid
T *placement_ptr = BlockRakingLayout::PlacementPtr(temp_storage.raking_grid, linear_tid);
detail::uninitialized_copy(placement_ptr, input);
cub::CTA_SYNC();
// Reduce parallelism down to just raking threads
if (linear_tid < RAKING_THREADS) {
WarpReverseScan warp_scan;
// Raking upsweep reduction across shared partials
T upsweep_partial = Upsweep(scan_op);
// Warp-synchronous scan
T exclusive_partial, block_aggregate;
warp_scan.ExclusiveReverseScan(upsweep_partial, exclusive_partial, scan_op, block_aggregate);
// Obtain block-wide postfix in lane0, then broadcast to other lanes
T block_postfix = block_postfix_callback_op(block_aggregate);
block_postfix = warp_scan.Broadcast(block_postfix, 0);
// Update postfix with warpscan exclusive partial
T downsweep_postfix = linear_tid == RAKING_THREADS - 1
? block_postfix : scan_op(block_postfix, exclusive_partial);
// Exclusive raking downsweep scan
ExclusiveDownsweep(scan_op, downsweep_postfix);
}
cub::CTA_SYNC();
// Grab thread postfix from shared memory
exclusive_output = *placement_ptr;
// // Compute warp scan in each warp.
// // The exclusive output from the last lane in each warp is invalid.
// T inclusive_output;
// WarpReverseScan warp_scan;
// warp_scan.ReverseScan(input, inclusive_output, exclusive_output, scan_op);
// // Compute the warp-wide postfix and block-wide aggregate for each warp. Warp postfix for the last warp is invalid.
// T block_aggregate;
// T warp_postfix = ComputeWarpPostfix(scan_op, inclusive_output, block_aggregate);
// // Apply warp postfix to our lane's partial
// if (warp_id != 0) {
// exclusive_output = scan_op(warp_postfix, exclusive_output);
// if (lane_id == 0) { exclusive_output = warp_postfix; }
// }
// // Use the first warp to determine the thread block postfix, returning the result in lane0
// if (warp_id == 0) {
// T block_postfix = block_postfix_callback_op(block_aggregate);
// if (lane_id == 0) {
// // Share the postfix with all threads
// detail::uninitialized_copy(&temp_storage.block_postfix,
// block_postfix);
// exclusive_output = block_postfix; // The block postfix is the exclusive output for tid0
// }
// }
// cub::CTA_SYNC();
// // Incorporate thread block postfix into outputs
// T block_postfix = temp_storage.block_postfix;
// if (linear_tid > 0) { exclusive_output = scan_op(block_postfix, exclusive_output); }
}
}
/**
* \brief Computes an inclusive block-wide postfix scan using the specified binary \p scan_op functor. Each thread contributes an array of consecutive input elements. the call-back functor \p block_postfix_callback_op is invoked by the first warp in the block, and the value returned by <em>lane</em><sub>0</sub> in that warp is used as the "seed" value that logically postfixes the thread block's scan inputs. Also provides every thread with the block-wide \p block_aggregate of all inputs.
*/
template <
int ITEMS_PER_THREAD,
typename ScanOp,
typename BlockPostfixCallbackOp>
__device__ __forceinline__ void InclusiveReverseScan(
T (&input)[ITEMS_PER_THREAD], ///< [in] Calling thread's input items
T (&output)[ITEMS_PER_THREAD], ///< [out] Calling thread's output items (may be aliased to \p input)
ScanOp scan_op, ///< [in] Binary scan functor
BlockPostfixCallbackOp &block_postfix_callback_op) ///< [in-out] <b>[<em>warp</em><sub>0</sub> only]</b> Call-back functor for specifying a block-wide postfix to be applied to the logical input sequence.
{
// Reduce consecutive thread items in registers
T thread_postfix = ThreadReverseReduce(input, scan_op);
// Exclusive thread block-scan
ExclusiveReverseScan(thread_postfix, thread_postfix, scan_op, block_postfix_callback_op);
// Inclusive scan in registers with postfix as seed
ThreadReverseScanInclusive(input, output, scan_op, thread_postfix);
}
}; |