File size: 14,603 Bytes
29a3d5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
/******************************************************************************
 * Copyright (c) 2023, Tri Dao.
 ******************************************************************************/

#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <torch/extension.h>
#include <vector>

#include "causal_conv1d.h"

#define CHECK_SHAPE(x, ...) TORCH_CHECK(x.sizes() == torch::IntArrayRef({__VA_ARGS__}), #x " must have shape (" #__VA_ARGS__ ")")

#define DISPATCH_ITYPE_FLOAT_AND_HALF_AND_BF16(ITYPE, NAME, ...)                    \
    if (ITYPE == at::ScalarType::Half) {                                            \
        using input_t = at::Half;                                                   \
        __VA_ARGS__();                                                              \
    } else if (ITYPE == at::ScalarType::BFloat16) {                                 \
        using input_t = at::BFloat16;                                               \
        __VA_ARGS__();                                                              \
    } else if (ITYPE == at::ScalarType::Float)  {                                   \
        using input_t = float;                                                      \
        __VA_ARGS__();                                                              \
    } else {                                                                        \
        AT_ERROR(#NAME, " not implemented for input type '", toString(ITYPE), "'"); \
    }

#define DISPATCH_WTYPE_FLOAT_AND_HALF_AND_BF16(WTYPE, NAME, ...)                     \
    if (WTYPE == at::ScalarType::Half) {                                             \
        using weight_t = at::Half;                                                   \
        __VA_ARGS__();                                                               \
    } else if (WTYPE == at::ScalarType::BFloat16) {                                  \
        using weight_t = at::BFloat16;                                               \
        __VA_ARGS__();                                                               \
    } else if (WTYPE == at::ScalarType::Float)  {                                    \
        using weight_t = float;                                                      \
        __VA_ARGS__();                                                               \
    } else {                                                                         \
        AT_ERROR(#NAME, " not implemented for weight type '", toString(WTYPE), "'"); \
    }

template<typename input_t, typename weight_t>
void causal_conv1d_fwd_cuda(ConvParamsBase &params, cudaStream_t stream);
template <typename input_t, typename weight_t>
void causal_conv1d_channellast_fwd_cuda(ConvParamsBase &params, cudaStream_t stream);

template<typename input_t, typename weight_t>
void causal_conv1d_bwd_cuda(ConvParamsBwd &params, cudaStream_t stream);
template<typename input_t, typename weight_t>
void causal_conv1d_channellast_bwd_cuda(ConvParamsBwd &params, cudaStream_t stream);

template<typename input_t, typename weight_t>
void causal_conv1d_update_cuda(ConvParamsBase &params, cudaStream_t stream);

void set_conv_params_fwd(ConvParamsBase &params,
                         // sizes
                         const size_t batch,
                         const size_t dim,
                         const size_t seqlen,
                         const size_t width,
                         // device pointers
                         const at::Tensor x,
                         const at::Tensor weight,
                         const at::Tensor out,
                         void* bias_ptr,
                         bool silu_activation) {

    // Reset the parameters
    memset(&params, 0, sizeof(params));

    params.batch = batch;
    params.dim = dim;
    params.seqlen = seqlen;
    params.width = width;

    params.silu_activation = silu_activation;

    // Set the pointers and strides.
    params.x_ptr = x.data_ptr();
    params.weight_ptr = weight.data_ptr();
    params.bias_ptr = bias_ptr;
    params.out_ptr = out.data_ptr();
    // All stride are in elements, not bytes.
    params.x_batch_stride = x.stride(0);
    params.x_c_stride = x.stride(1);
    params.x_l_stride = x.stride(-1);
    params.weight_c_stride = weight.stride(0);
    params.weight_width_stride = weight.stride(1);
    params.out_batch_stride = out.stride(0);
    params.out_c_stride = out.stride(1);
    params.out_l_stride = out.stride(-1);
}


void set_conv_params_bwd(ConvParamsBwd &params,
                         // sizes
                         const size_t batch,
                         const size_t dim,
                         const size_t seqlen,
                         const size_t width,
                         // device pointers
                         const at::Tensor x,
                         const at::Tensor weight,
                         void* bias_ptr,
                         const at::Tensor dout,
                         const at::Tensor dx,
                         const at::Tensor dweight,
                         void* dbias_ptr,
                         bool silu_activation) {
    // Pass in "dout" instead of "out", we're not gonna use "out" at all.
    set_conv_params_fwd(params, batch, dim, seqlen, width,
                        x, weight, dout, bias_ptr, silu_activation);

    // Set the pointers and strides.
    params.dout_ptr = dout.data_ptr();
    params.dx_ptr = dx.data_ptr();
    params.dweight_ptr = dweight.data_ptr();
    params.dbias_ptr = dbias_ptr;
    // All stride are in elements, not bytes.
    params.dout_batch_stride = dout.stride(0);
    params.dout_c_stride = dout.stride(1);
    params.dout_l_stride = dout.stride(2);
    params.dweight_c_stride = dweight.stride(0);
    params.dweight_width_stride = dweight.stride(1);
    params.dx_batch_stride = dx.stride(0);
    params.dx_c_stride = dx.stride(1);
    params.dx_l_stride = dx.stride(2);
}

at::Tensor
causal_conv1d_fwd(const at::Tensor &x, const at::Tensor &weight,
                  const c10::optional<at::Tensor> &bias_,
                  bool silu_activation) {
    auto input_type = x.scalar_type();
    auto weight_type = weight.scalar_type();
    TORCH_CHECK(input_type == at::ScalarType::Float || input_type == at::ScalarType::Half || input_type == at::ScalarType::BFloat16);
    TORCH_CHECK(weight_type == at::ScalarType::Float || weight_type == at::ScalarType::Half || weight_type == at::ScalarType::BFloat16);

    TORCH_CHECK(x.is_cuda());
    TORCH_CHECK(weight.is_cuda());

    const auto sizes = x.sizes();
    const int batch_size = sizes[0];
    const int dim = sizes[1];
    const int seqlen = sizes[2];
    const int width = weight.size(-1);

    CHECK_SHAPE(x, batch_size, dim, seqlen);
    CHECK_SHAPE(weight, dim, width);

    TORCH_CHECK(x.stride(2) == 1 || x.stride(1) == 1);
    const bool is_channel_last = x.stride(1) == 1 && x.stride(2) > 1;

    if (is_channel_last) {
        TORCH_CHECK(dim % 8 == 0, "causal_conv1d only supports channel dimension divisible by 8 for now");
    }
    TORCH_CHECK(width >= 2 && width <= 4, "causal_conv1d only supports width between 2 and 4");


    if (bias_.has_value()) {
        auto bias = bias_.value();
        TORCH_CHECK(bias.scalar_type() == weight_type);
        TORCH_CHECK(bias.is_cuda());
        TORCH_CHECK(bias.stride(-1) == 1);
        CHECK_SHAPE(bias, dim);
    }

    at::Tensor out = torch::empty_like(x);

    ConvParamsBase params;
    set_conv_params_fwd(params, batch_size, dim, seqlen, width, x, weight, out,
                        bias_.has_value() ? bias_.value().data_ptr() : nullptr,
                        silu_activation);

    // Otherwise the kernel will be launched from cuda:0 device
    // Cast to char to avoid compiler warning about narrowing
    at::cuda::CUDAGuard device_guard{(char)x.get_device()};
    auto stream = at::cuda::getCurrentCUDAStream().stream();
    DISPATCH_ITYPE_FLOAT_AND_HALF_AND_BF16(x.scalar_type(), "causal_conv1d_fwd", [&] {
        DISPATCH_WTYPE_FLOAT_AND_HALF_AND_BF16(weight.scalar_type(), "causal_conv1d_fwd", [&] {
            if (!is_channel_last) {
                causal_conv1d_fwd_cuda<input_t, weight_t>(params, stream);
            } else {
                causal_conv1d_channellast_fwd_cuda<input_t, weight_t>(params, stream);
            }
        });
    });
    return out;
}

std::vector<at::Tensor>
causal_conv1d_bwd(const at::Tensor &x, const at::Tensor &weight,
                  const c10::optional<at::Tensor> &bias_,
                  at::Tensor &dout,
                  c10::optional<at::Tensor> &dx_,
                  bool silu_activation) {
    auto input_type = x.scalar_type();
    auto weight_type = weight.scalar_type();
    TORCH_CHECK(input_type == at::ScalarType::Float || input_type == at::ScalarType::Half || input_type == at::ScalarType::BFloat16);
    TORCH_CHECK(weight_type == at::ScalarType::Float || weight_type == at::ScalarType::Half || weight_type == at::ScalarType::BFloat16);

    TORCH_CHECK(x.is_cuda());
    TORCH_CHECK(weight.is_cuda());
    TORCH_CHECK(dout.is_cuda());

    const auto sizes = x.sizes();
    const int batch_size = sizes[0];
    const int dim = sizes[1];
    const int seqlen = sizes[2];
    const int width = weight.size(-1);

    TORCH_CHECK(width >= 2 && width <= 4, "causal_conv1d only supports width between 2 and 4");

    CHECK_SHAPE(x, batch_size, dim, seqlen);
    CHECK_SHAPE(weight, dim, width);
    CHECK_SHAPE(dout, batch_size, dim, seqlen);

    TORCH_CHECK(x.stride(2) == 1 || x.stride(1) == 1);
    const bool is_channel_last = x.stride(1) == 1 && x.stride(2) > 1;
    if (!is_channel_last && dout.stride(2) != 1) { dout = dout.contiguous(); }
    if (is_channel_last && dout.stride(1) != 1) { dout = dout.transpose(-1, -2).contiguous().transpose(-1, -2); }

    if (bias_.has_value()) {
        auto bias = bias_.value();
        TORCH_CHECK(bias.scalar_type() == weight_type);
        TORCH_CHECK(bias.is_cuda());
        TORCH_CHECK(bias.stride(-1) == 1);
        CHECK_SHAPE(bias, dim);
    }

    at::Tensor dx;
    if (dx_.has_value()) {
        dx = dx_.value();
        TORCH_CHECK(dx.scalar_type() == input_type);
        TORCH_CHECK(dx.is_cuda());
        CHECK_SHAPE(dx, batch_size, dim, seqlen);
        if (!is_channel_last) { TORCH_CHECK(dx.stride(2) == 1); }
        if (is_channel_last) { TORCH_CHECK(dx.stride(1) == 1); }
    } else {
        dx = torch::empty_like(x);
    }

    // Otherwise the kernel will be launched from cuda:0 device
    // Cast to char to avoid compiler warning about narrowing
    at::cuda::CUDAGuard device_guard{(char)x.get_device()};

    at::Tensor dweight = torch::zeros_like(weight, weight.options().dtype(at::kFloat));
    at::Tensor dbias;
    if (bias_.has_value()) { dbias = torch::zeros_like(bias_.value(), bias_.value().options().dtype(at::kFloat)); }

    ConvParamsBwd params;
    set_conv_params_bwd(params, batch_size, dim, seqlen, width,
                        x, weight, bias_.has_value() ? bias_.value().data_ptr() : nullptr,
                        dout, dx, dweight, bias_.has_value() ? dbias.data_ptr() : nullptr,
                        silu_activation);

    auto stream = at::cuda::getCurrentCUDAStream().stream();
    DISPATCH_ITYPE_FLOAT_AND_HALF_AND_BF16(x.scalar_type(), "causal_conv1d_bwd", [&] {
        DISPATCH_WTYPE_FLOAT_AND_HALF_AND_BF16(weight.scalar_type(), "causal_conv1d_bwd", [&] {
            if (!is_channel_last) {
                causal_conv1d_bwd_cuda<input_t, weight_t>(params, stream);
            } else {
                causal_conv1d_channellast_bwd_cuda<input_t, weight_t>(params, stream);
            }
        });
    });
    return {dx, dweight.to(weight.dtype()), bias_.has_value() ? dbias.to(bias_.value().dtype()) : dbias};
}

at::Tensor
causal_conv1d_update(const at::Tensor &x,
                     const at::Tensor &conv_state,
                     const at::Tensor &weight,
                     const c10::optional<at::Tensor> &bias_,
                  bool silu_activation) {
    auto input_type = x.scalar_type();
    auto weight_type = weight.scalar_type();
    TORCH_CHECK(input_type == at::ScalarType::Float || input_type == at::ScalarType::Half || input_type == at::ScalarType::BFloat16);
    TORCH_CHECK(weight_type == at::ScalarType::Float || weight_type == at::ScalarType::Half || weight_type == at::ScalarType::BFloat16);
    TORCH_CHECK(conv_state.scalar_type() == input_type);

    TORCH_CHECK(x.is_cuda());
    TORCH_CHECK(conv_state.is_cuda());
    TORCH_CHECK(weight.is_cuda());

    const auto sizes = x.sizes();
    const int batch_size = sizes[0];
    const int dim = sizes[1];
    const int width = weight.size(-1);

    CHECK_SHAPE(x, batch_size, dim);
    CHECK_SHAPE(conv_state, batch_size, dim, width);
    CHECK_SHAPE(weight, dim, width);

    TORCH_CHECK(width >= 2 && width <= 4, "causal_conv1d only supports width between 2 and 4");

    if (bias_.has_value()) {
        auto bias = bias_.value();
        TORCH_CHECK(bias.scalar_type() == weight_type);
        TORCH_CHECK(bias.is_cuda());
        TORCH_CHECK(bias.stride(-1) == 1);
        CHECK_SHAPE(bias, dim);
    }

    at::Tensor out = torch::empty_like(x);

    ConvParamsBase params;
    set_conv_params_fwd(params, batch_size, dim, /*seqlen=*/1, width, x, weight, out,
                        bias_.has_value() ? bias_.value().data_ptr() : nullptr,
                        silu_activation);
    params.conv_state_ptr = conv_state.data_ptr();
    // All stride are in elements, not bytes.
    params.conv_state_batch_stride = conv_state.stride(0);
    params.conv_state_c_stride = conv_state.stride(1);
    params.conv_state_l_stride = conv_state.stride(2);

    // Otherwise the kernel will be launched from cuda:0 device
    // Cast to char to avoid compiler warning about narrowing
    at::cuda::CUDAGuard device_guard{(char)x.get_device()};
    auto stream = at::cuda::getCurrentCUDAStream().stream();
    DISPATCH_ITYPE_FLOAT_AND_HALF_AND_BF16(x.scalar_type(), "causal_conv1d_update", [&] {
        DISPATCH_WTYPE_FLOAT_AND_HALF_AND_BF16(weight.scalar_type(), "causal_conv1d_update", [&] {
            causal_conv1d_update_cuda<input_t, weight_t>(params, stream);
        });
    });
    return out;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("causal_conv1d_fwd", &causal_conv1d_fwd, "Causal conv1d forward");
    m.def("causal_conv1d_bwd", &causal_conv1d_bwd, "Causal conv1d backward");
    m.def("causal_conv1d_update", &causal_conv1d_update, "Causal conv1d update");
}