Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,065 Bytes
29a3d5a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
# Copyright (c) 2023, Tri Dao, Albert Gu.
import argparse
import time
import json
import torch
import torch.nn.functional as F
from einops import rearrange
from transformers import AutoTokenizer, AutoModelForCausalLM
from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel
parser = argparse.ArgumentParser(description="Generation benchmarking")
parser.add_argument("--model-name", type=str, default="state-spaces/mamba-130m")
parser.add_argument("--prompt", type=str, default=None)
parser.add_argument("--promptlen", type=int, default=100)
parser.add_argument("--genlen", type=int, default=100)
parser.add_argument("--temperature", type=float, default=1.0)
parser.add_argument("--topk", type=int, default=1)
parser.add_argument("--topp", type=float, default=1.0)
parser.add_argument("--batch", type=int, default=1)
args = parser.parse_args()
repeats = 3
device = "cuda"
dtype = torch.float16
print(f"Loading model {args.model_name}")
is_mamba = args.model_name.startswith("state-spaces/mamba-") or "mamba" in args.model_name
if is_mamba:
tokenizer = AutoTokenizer.from_pretrained("/home/zhulianghui/VisionProjects/mamba/ckpts/gpt-neox-20b-tokenizer")
model = MambaLMHeadModel.from_pretrained(args.model_name, device=device, dtype=dtype)
else:
tokenizer = AutoTokenizer.from_pretrained(args.model_name)
model = AutoModelForCausalLM.from_pretrained(args.model_name, device_map={"": device}, torch_dtype=dtype)
model.eval()
print(f"Number of parameters: {sum(p.numel() for p in model.parameters() if p.requires_grad)}")
torch.random.manual_seed(0)
if args.prompt is None:
input_ids = torch.randint(1, 1000, (args.batch, args.promptlen), dtype=torch.long, device="cuda")
attn_mask = torch.ones_like(input_ids, dtype=torch.long, device="cuda")
else:
tokens = tokenizer(args.prompt, return_tensors="pt")
input_ids = tokens.input_ids.to(device=device)
attn_mask = tokens.attention_mask.to(device=device)
max_length = input_ids.shape[1] + args.genlen
if is_mamba:
fn = lambda: model.generate(
input_ids=input_ids,
max_length=max_length,
cg=True,
return_dict_in_generate=True,
output_scores=True,
enable_timing=False,
temperature=args.temperature,
top_k=args.topk,
top_p=args.topp,
)
else:
fn = lambda: model.generate(
input_ids=input_ids,
attention_mask=attn_mask,
max_length=max_length,
return_dict_in_generate=True,
pad_token_id=tokenizer.eos_token_id,
do_sample=True,
temperature=args.temperature,
top_k=args.topk,
top_p=args.topp,
)
out = fn()
if args.prompt is not None:
print(tokenizer.batch_decode(out.sequences.tolist()))
torch.cuda.synchronize()
start = time.time()
for _ in range(repeats):
fn()
torch.cuda.synchronize()
print(f"Prompt length: {len(input_ids[0])}, generation length: {len(out.sequences[0]) - len(input_ids[0])}")
print(f"{args.model_name} prompt processing + decoding time: {(time.time() - start) / repeats * 1000:.0f}ms")
|