Spaces:
Sleeping
Sleeping
from easydict import EasyDict | |
stocks_dqn_config = dict( | |
exp_name='stocks_dqn_seed0', | |
env=dict( | |
# Whether to use shared memory. Only effective if "env_manager_type" is 'subprocess' | |
# Env number respectively for collector and evaluator. | |
collector_env_num=8, | |
evaluator_env_num=8, | |
env_id='stocks-v0', | |
n_evaluator_episode=8, | |
stop_value=2, | |
# one trading year. | |
eps_length=253, | |
# associated with the feature length. | |
window_size=20, | |
# the path to save result image. | |
save_path='./fig/', | |
# the raw data file name | |
stocks_data_filename='STOCKS_GOOGL', | |
# the stocks range percentage used by train/test. | |
# if one of them is None, train & test set will use all data by default. | |
train_range=None, | |
test_range=None, | |
), | |
policy=dict( | |
# Whether to use cuda for network. | |
cuda=True, | |
model=dict( | |
obs_shape=62, | |
action_shape=5, | |
encoder_hidden_size_list=[128], | |
head_layer_num=1, | |
# Whether to use dueling head. | |
dueling=True, | |
), | |
# Reward's future discount factor, aka. gamma. | |
discount_factor=0.99, | |
# How many steps in td error. | |
nstep=5, | |
# learn_mode config | |
learn=dict( | |
update_per_collect=10, | |
batch_size=64, | |
learning_rate=0.001, | |
# Frequency of target network update. | |
target_update_freq=100, | |
ignore_done=True, | |
), | |
# collect_mode config | |
collect=dict( | |
# You can use either "n_sample" or "n_episode" in collector.collect. | |
# Get "n_sample" samples per collect. | |
n_sample=64, | |
# Cut trajectories into pieces with length "unroll_len". | |
unroll_len=1, | |
), | |
# command_mode config | |
other=dict( | |
# Epsilon greedy with decay. | |
eps=dict( | |
# Decay type. Support ['exp', 'linear']. | |
type='exp', | |
start=0.95, | |
end=0.1, | |
decay=50000, | |
), | |
replay_buffer=dict(replay_buffer_size=100000, ) | |
), | |
), | |
) | |
stocks_dqn_config = EasyDict(stocks_dqn_config) | |
main_config = stocks_dqn_config | |
stocks_dqn_create_config = dict( | |
env=dict( | |
type='stocks-v0', | |
import_names=['dizoo.gym_anytrading.envs.stocks_env'], | |
), | |
env_manager=dict(type='base'), | |
policy=dict(type='dqn', ), | |
evaluator=dict( | |
type='trading_interaction', | |
import_names=['dizoo.gym_anytrading.worker'], | |
), | |
) | |
stocks_dqn_create_config = EasyDict(stocks_dqn_create_config) | |
create_config = stocks_dqn_create_config | |
if __name__ == "__main__": | |
from ding.entry import serial_pipeline | |
serial_pipeline([main_config, create_config], seed=0, max_env_step=int(1e7)) | |