File size: 2,810 Bytes
7f88dd7
b4d7fed
 
56afb5e
7022cc6
 
 
9e24192
 
 
 
 
 
 
 
7022cc6
 
 
 
 
 
 
 
 
 
 
 
5e47d3b
7022cc6
e90bb7a
7022cc6
 
 
 
 
2417919
 
 
 
 
 
 
 
 
fbaf836
2417919
 
 
9e24192
 
 
 
 
 
 
 
e793092
7f88dd7
 
46fd8e8
34d9197
 
 
c173614
34d9197
 
6ef6ed7
34d9197
e90bb7a
7f88dd7
9e24192
e90bb7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e24192
 
 
8c0fcd2
7022cc6
e90bb7a
9e24192
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import gradio as gr 
import yt_dlp
import os 
import json
import rembg
import cv2

load_js = """
function(text_input, url_params) {
    console.log(text_input, url_params);
    const params = new URLSearchParams(window.location.search);
    url_params = Object.fromEntries(params);
    return [text_input, url_params]
}
"""
def rem_cv(inp):
    cv2cap = cv2.VideoCapture(f'{inp}')
    
    kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3))
    fgbg = cv2.bgsegm.createBackgroundSubtractorGMG()
    
    while True():
        ret, frame = cap.read()
        
        fgmask = fgbg.apply(frame)
        fgmask = cv2.morphologyEx(fgmask, cv2.MORPH_OPEN, kernel)
        yield (fgmask)

        
def rem_bg(inp):
    out = rem_bg()


    
def rem_bg_og(inp):
    #transparent background .mov
    #os.system(f'backgroundremover -i "{inp}" -tv -o "{inp}.mov"')
    #video video to be overlayed output
    #os.system(f' backgroundremover -i "/path/to/video.mp4" -tov "/path/to/videtobeoverlayed.mp4" -o "output.mov"')
    #video over image file 
    #os.system(f'backgroundremover -i "/path/to/video.mp4" -toi "/path/to/videtobeoverlayed.mp4" -o "output.mov"')
    #output to transparent GIF
    #os.system(f'backgroundremover -i "/path/to/video.mp4" -tg -o "output.gif"')
    #output to matte background
    os.system(f'backgroundremover -i "{inp}" -mk -o "{inp}.matte.mp4"')

    
    return f'{inp}.matte.mp4'
def predict(text, url_params):
    mod_url=""
    mod=gr.HTML("")
    out = None
    valid=gr.update(visible=False)
    mod_url = url_params.get('url')
    print (mod_url)
    return ["" + text + "", mod_url]

def dl(inp):
    out = None
    out_file=[]
    try:
        inp_out=inp.replace("https://","")
        inp_out=inp_out.replace("/","_").replace(".","_")
        os.system(f'yt-dlp "{inp}" --trim-filenames 100 -o "{inp_out}.mp4"')  
        out = f"{inp_out}.mp4"
    except Exception as e:
        print (e)
        out = None
    return out,out,out

with gr.Blocks() as app:
    with gr.Tab("Load"):
        inp_url = gr.Textbox()
        go_btn = gr.Button("Run")
        with gr.Row():
            with gr.Column():
                outp_vid=gr.Video()
            with gr.Column():
                outp_file=gr.Textbox()
    with gr.Tab("Rem BG"):
        with gr.Row():    
            with gr.Column():
                rem_btn=gr.Button()
                in_vid=gr.Video()
            with gr.Column():
                rem_vid=gr.Video()
    with gr.Row(visible=False):
        text_input=gr.Textbox()
        text_output=gr.Textbox()
        url_params=gr.JSON()
    rem_btn.click(rem_cv,in_vid,rem_vid)
    go_btn.click(dl,inp_url,[outp_vid,in_vid,outp_file])
    app.load(fn=predict, inputs=[text_input,url_params], outputs=[text_output,text_input],_js=load_js)
app.launch()