import gradio as gr import torch import numpy as np import modin.pandas as pd from PIL import Image from diffusers import StableVideoDiffusionPipeline from huggingface_hub import login import os token = os.environ['HF_TOKEN'] login(token=token) device = 'cuda' if torch.cuda.is_available() else 'cpu' torch.cuda.max_memory_allocated(device=device) torch.cuda.empty_cache() pipe = StableVideoDiffusionPipeline.from_pretrained("stabilityai/stable-video-diffusion-img2vid") #pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) pipe.enable_xformers_memory_efficient_attention() pipe = pipe.to(device) torch.cuda.empty_cache() def genie(src_image): frames = pipe(image=src_image).images[0] torch.cuda.empty_cache() return frames gr.Interface(fn=genie, inputs=gr.Image(type="pil"), outputs=gr.Video()).launch(debug=True, max_threads=80)