Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
import numpy as np | |
import modin.pandas as pd | |
from PIL import Image | |
from diffusers import DiffusionPipeline | |
from huggingface_hub import login | |
import os | |
from diffusers.models import AutoencoderKL | |
login(token=os.environ.get('HF_KEY')) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
torch.cuda.max_memory_allocated(device='cuda') | |
vae = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", torch_dtype=torch.float16) | |
torch.cuda.empty_cache() | |
def genie (prompt, negative_prompt, scale, steps, seed, upscaler): | |
torch.cuda.max_memory_allocated(device='cuda') | |
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-0.9", torch_dtype=torch.float16, variant="fp16", use_safetensors=True, vae=vae) | |
pipe = pipe.to(device) | |
pipe.enable_xformers_memory_efficient_attention() | |
torch.cuda.empty_cache() | |
generator = torch.Generator(device=device).manual_seed(seed) | |
int_image = pipe(prompt, negative_prompt=negative_prompt, num_inference_steps=steps, guidance_scale=scale, num_images_per_prompt=1, generator=generator).images | |
torch.cuda.empty_cache() | |
if upscaler == 'Yes': | |
torch.cuda.max_memory_allocated(device='cuda') | |
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-0.9", torch_dtype=torch.float16, variant="fp16", use_safetensors=True, vae=vae) | |
pipe = pipe.to(device) | |
pipe.enable_xformers_memory_efficient_attention() | |
image = pipe(prompt=prompt, image=int_image).images[0] | |
torch.cuda.empty_cache() | |
torch.cuda.max_memory_allocated(device='cuda') | |
pipe = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True) | |
pipe.to("cuda") | |
pipe.enable_xformers_memory_efficient_attention() | |
upscaled = pipe(prompt=prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=5, guidance_scale=0).images[0] | |
torch.cuda.empty_cache() | |
return (image, upscaled) | |
else: | |
torch.cuda.empty_cache() | |
torch.cuda.max_memory_allocated(device=device) | |
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-0.9", torch_dtype=torch.float16, variant="fp16", use_safetensors=True, vae=vae) | |
pipe = pipe.to(device) | |
pipe.enable_xformers_memory_efficient_attention() | |
image = pipe(prompt=prompt, image=int_image).images[0] | |
torch.cuda.empty_cache() | |
return (image, image) | |
gr.Interface(fn=genie, inputs=[gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'), | |
gr.Textbox(label='What you Do Not want the AI to generate.'), | |
gr.Slider(1, 15, 10), gr.Slider(25, maximum=100, value=50, step=1), | |
gr.Slider(minimum=1, step=1, maximum=999999999999999999, randomize=True), | |
gr.Radio(['Yes', 'No'], label='Upscale?')], | |
outputs=['image', 'image'], | |
title="Stable Diffusion XL 0.9 GPU", | |
description="SDXL 0.9 GPU. <b>WARNING:</b> Capable of producing NSFW images.", | |
article = "Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").launch(debug=True, max_threads=80) | |