Spaces:
Runtime error
Runtime error
import torch #needed only for GPU | |
from PIL import Image | |
from io import BytesIO | |
import numpy as np | |
from diffusers import StableDiffusionLatentUpscalePipeline, StableDiffusionUpscalePipeline | |
import gradio as gr | |
import modin.pandas as pd | |
# load model for CPU or GPU | |
model_2x = "stabilityai/sd-x2-latent-upscaler" | |
model_4x = "stabilityai/stable-diffusion-x4-upscaler" | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
upscaler2x = StableDiffusionLatentUpscalePipeline.from_pretrained(model_2x, torch_dtype=torch.float16) if torch.cuda.is_available() else StableDiffusionLatentUpscalePipeline.from_pretrained(model_2x) | |
upscaler4x = StableDiffusionUpscalePipeline.from_pretrained(model_4x, torch_dtype=torch.float16, revision="fp16") if torch.cuda.is_available() else StableDiffusionUpscalePipeline.from_pretrained(model_4x) | |
upscaler2x = upscaler2x.to(device) | |
upscaler4x = upscaler4x.to(device) | |
#define interface | |
def upscale(raw_img, model, prompt, negative_prompt, scale, steps, Seed): | |
generator = torch.manual_seed(Seed) | |
raw_img = Image.open(raw_img).convert("RGB") | |
if model == "Upscaler 4x": | |
low_res_img = raw_img.resize((128, 128)) | |
upscaled_image = upscaler4x(prompt=prompt, negative_prompt=negative_prompt, image=low_res_img, guidance_scale=scale, num_inference_steps=steps).images[0] | |
else: | |
upscaled_image = upscaler2x(prompt=prompt, negative_prompt=negative_prompt, image=raw_img, guidance_scale=scale, num_inference_steps=steps).images[0] | |
return upscaled_image | |
#launch interface | |
gr.Interface(fn=upscale, inputs=[ | |
gr.Image(type="filepath", label='Lower Resolution Image'), | |
gr.Radio(['Upscaler 2x','Upscaler 4x'], label="Models"), | |
gr.Textbox(label="Optional: Enter a Prompt to Slightly Guide the AI's Enhancement"), | |
gr.Textbox(label='Experimental: Slightly influence What you do not want the AI to Enhance.'), | |
gr.Slider(2, 15, 7, step=1, label='Guidance Scale: How much the AI influences the Upscaling.'), | |
gr.Slider(5, 50, 25, step=1, label='Number of Iterations'), | |
gr.Slider(minimum=1, maximum=999999999999999999, randomize=True, step=1)], | |
outputs=gr.Image(type="filepath", label = 'Upscaled Image'), | |
title='SD Upscaler', | |
description='2x Latent Upscaler using SD 2.0 And 4x Upscaler using SD 2.1. This version runs on CPU or GPU and is currently running on a T4 GPU. For 4x Upscaling use images lower than 512x512. For 2x Upscaling use 512x512 to 768x768 images.<br><br><b>Notice: Largest Accepted Resolution is 768x768', | |
article = "Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").launch(max_threads=True, debug=True) |