File size: 5,089 Bytes
e1f356a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import gradio as gr
import urllib.request
import requests
import bs4
import lxml
import os
#import subprocess
from huggingface_hub import InferenceClient,HfApi
import random
import json
import datetime
#from query import tasks
from prompts import (
    COMPRESS_DATA_PROMPT,
    COMPRESS_DATA_PROMPT_SMALL,
    LOG_PROMPT,
    LOG_RESPONSE,
)
api=HfApi()



client = InferenceClient(
    "mistralai/Mixtral-8x7B-Instruct-v0.1"
)

def parse_action(string: str):
    print("PARSING:")
    print(string)
    assert string.startswith("action:")
    idx = string.find("action_input=")
    print(idx)
    if idx == -1:
        print ("idx == -1")
        print (string[8:])
        return string[8:], None

    print ("last return:")
    print (string[8 : idx - 1])
    print (string[idx + 13 :].strip("'").strip('"'))
    return string[8 : idx - 1], string[idx + 13 :].strip("'").strip('"')



VERBOSE = True
MAX_HISTORY = 100
MAX_DATA = 1000

def format_prompt(message, history):
  prompt = "<s>"
  for user_prompt, bot_response in history:
    prompt += f"[INST] {user_prompt} [/INST]"
    prompt += f" {bot_response}</s> "
  prompt += f"[INST] {message} [/INST]"
  return prompt


def run_gpt(
    prompt_template,
    stop_tokens,
    max_tokens,
    seed,
    purpose,
    **prompt_kwargs,
):
    print(seed)
    generate_kwargs = dict(
        temperature=0.9,
        max_new_tokens=max_tokens,
        top_p=0.95,
        repetition_penalty=1.0,
        do_sample=True,
        seed=seed,
    )
    
    content = PREFIX.format(
        timestamp=timestamp,
        purpose=purpose,
    ) + prompt_template.format(**prompt_kwargs)
    if VERBOSE:
        print(LOG_PROMPT.format(content))
    
    
    #formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
    #formatted_prompt = format_prompt(f'{content}', history)

    stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False)
    resp = ""
    for response in stream:
        resp += response.token.text
        #yield resp

    if VERBOSE:
        print(LOG_RESPONSE.format(resp))
    return resp

def compress_data(c,purpose, task, history):
    seed=random.randint(1,1000000000)
    
    print (c)
    #tot=len(purpose)
    #print(tot)
    divr=int(c)/MAX_DATA
    divi=int(divr)+1 if divr != int(divr) else int(divr)
    chunk = int(int(c)/divr)
    print(f'chunk:: {chunk}')
    print(f'divr:: {divr}')
    print (f'divi:: {divi}')
    out = []
    #out=""
    s=0
    e=chunk
    print(f'e:: {e}')
    new_history=""
    task = f'Compile this data to fulfill the task: {task}, and complete the purpose: {purpose}\n'
    for z in range(divi):
        print(f's:e :: {s}:{e}')
        
        hist = history[s:e]
        
        resp = run_gpt(
            COMPRESS_DATA_PROMPT_SMALL,
            stop_tokens=["observation:", "task:", "action:", "thought:"],
            max_tokens=2048,
            seed=seed,
            purpose=purpose,
            task=task,
            knowledge=new_history,
            history=hist,
        )
        new_history = resp
        print (resp)
        out+=resp
        e=e+chunk
        s=s+chunk
    '''
    resp = run_gpt(
        COMPRESS_DATA_PROMPT,
        stop_tokens=["observation:", "task:", "action:", "thought:"],
        max_tokens=1024,
        seed=seed,
        purpose=purpose,
        task=task,
        knowledge=new_history,
        history="All data has been recieved.",
    )'''
    print ("final" + resp)
    history = "observation: {}\n".format(resp)
    return history



def summarize(inp,file=None):
    out = str(inp)
    rl = len(out)
    print(f'rl:: {rl}')
    for i in str(out):
        if i == " " or i=="," or i=="\n":
            c +=1
    print (f'c:: {c}')
    if rl > MAX_DATA:
        print("compressing...")
        rawp = compress_data(c,purpose,task,out)    
    print (rawp)
    print (f'out:: {out}')
    #history += "observation: the search results are:\n {}\n".format(out)
    task = "complete?"
    return history        
#################################


examples =[
    "what are todays breaking news stories?",
    "find the most popular model that I can use to generate an image by providing a text prompt",
    "return the top 10 models that I can use to identify objects in images",
    "which models have the most likes from each category?"
]


app = gr.ChatInterface(
    fn=run,
    chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
    title="Mixtral 46.7B Powered <br> Search",
    examples=examples,
    concurrency_limit=20,
)

'''
with gr.Blocks() as app:
    with gr.Row():
        inp_query=gr.Textbox()
        models_dd=gr.Dropdown(choices=[m for m in return_list],interactive=True)
    with gr.Row():
        button=gr.Button()
        stop_button=gr.Button("Stop")
    text=gr.JSON()
    inp_query.change(search_models,inp_query,models_dd)
    go=button.click(test_fn,None,text)
    stop_button.click(None,None,None,cancels=[go])
'''
app.launch(server_port=7860,show_api=False)