File size: 5,122 Bytes
e5cc640
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57f2eec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5cc640
 
 
 
 
 
 
 
 
 
 
 
 
 
f34d9ab
57f2eec
 
 
e5cc640
1e8689e
57f2eec
 
 
 
 
 
 
 
e5cc640
 
 
1e8689e
e5cc640
 
 
 
 
 
 
 
 
1e8689e
e5cc640
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import gradio as gr
import os
import torch
import gradio as gr
from transformers import M2M100Tokenizer, M2M100ForConditionalGeneration

if torch.cuda.is_available():
    device = torch.device("cuda:0")
else:
    device = torch.device("cpu")

tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_1.2B")
model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_1.2B").to(device)
model.eval()

lang_id = {
    "":"",
    "Afrikaans": "af",
    "Albanian": "sq",
    "Amharic": "am",
    "Arabic": "ar",
    "Armenian": "hy",
    "Asturian": "ast",
    "Azerbaijani": "az",
    "Bashkir": "ba",
    "Belarusian": "be",
    "Bulgarian": "bg",
    "Bengali": "bn",
    "Breton": "br",
    "Bosnian": "bs",
    "Burmese": "my",
    "Catalan": "ca",
    "Cebuano": "ceb",
    "Chinese": "zh",
    "Chinese (simplified)": "zh",
    "Chinese (traditional)": "zh",    
    "Croatian": "hr",
    "Czech": "cs",
    "Danish": "da",
    "Dutch": "nl",
    "English": "en",
    "Estonian": "et",
    "Fulah": "ff",
    "Finnish": "fi",
    "French": "fr",
    "Western Frisian": "fy",
    "Gaelic": "gd",
    "Galician": "gl",
    "Georgian": "ka",
    "German": "de",
    "Greek": "el",
    "Gujarati": "gu",
    "Hausa": "ha",
    "Hebrew": "he",
    "Hindi": "hi",
    "Haitian": "ht",
    "Hungarian": "hu",
    "Irish": "ga",
    "Indonesian": "id",
    "Igbo": "ig",
    "Iloko": "ilo",
    "Icelandic": "is",
    "Italian": "it",
    "Japanese": "ja",
    "Javanese": "jv",
    "Kazakh": "kk",
    "Central Khmer": "km",
    "Kannada": "kn",
    "Korean": "ko",
    "Luxembourgish": "lb",
    "Ganda": "lg",
    "Lingala": "ln",
    "Lao": "lo",
    "Lithuanian": "lt",
    "Latvian": "lv",
    "Malagasy": "mg",
    "Macedonian": "mk",
    "Malayalam": "ml",
    "Mongolian": "mn",
    "Marathi": "mr",
    "Malay": "ms",
    "Nepali": "ne",
    "Norwegian": "no",
    "Northern Sotho": "ns",
    "Occitan": "oc",
    "Oriya": "or",
    "Panjabi": "pa",
    "Persian": "fa",
    "Polish": "pl",
    "Pushto": "ps",
    "Portuguese": "pt",
    "Romanian": "ro",
    "Russian": "ru",
    "Sindhi": "sd",
    "Sinhala": "si",
    "Slovak": "sk",
    "Slovenian": "sl",
    "Spanish": "es",
    "Somali": "so",
    "Serbian": "sr",
    "Serbian (cyrillic)": "sr",
    "Serbian (latin)": "sr",    
    "Swati": "ss",
    "Sundanese": "su",
    "Swedish": "sv",
    "Swahili": "sw",
    "Tamil": "ta",
    "Thai": "th",
    "Tagalog": "tl",
    "Tswana": "tn",
    "Turkish": "tr",
    "Ukrainian": "uk",
    "Urdu": "ur",
    "Uzbek": "uz",
    "Vietnamese": "vi",
    "Welsh": "cy",
    "Wolof": "wo",
    "Xhosa": "xh",
    "Yiddish": "yi",
    "Yoruba": "yo",
    "Zulu": "zu",
}

def trans_page(input,trg):
    src_lang = lang_id["English"]
    trg_lang = lang_id[trg]
    if trg_lang != src_lang:
        
        tokenizer.src_lang = src_lang
        with torch.no_grad():
            encoded_input = tokenizer(input, return_tensors="pt").to(device)
            generated_tokens = model.generate(**encoded_input, forced_bos_token_id=tokenizer.get_lang_id(trg_lang))
            translated_text = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
    else:
        translated_text=input
        pass
    return translated_text


def trans_to(input,src,trg):
    src_lang = lang_id[src]
    trg_lang = lang_id[trg]
    if trg_lang != src_lang:
        tokenizer.src_lang = src_lang
        with torch.no_grad():
            encoded_input = tokenizer(input, return_tensors="pt").to(device)
            generated_tokens = model.generate(**encoded_input, forced_bos_token_id=tokenizer.get_lang_id(trg_lang))
            translated_text = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
    else:
        translated_text=input
        pass
    return translated_text

md1 = "Translate - 100 Languages"



with gr.Blocks() as transbot:
    this=gr.State()
    with gr.Row():
        gr.Column()
        with gr.Column():
            with gr.Row():
                t_space = gr.Dropdown(label="Translate Space", choices=list(lang_id.keys()),value="English")
                t_submit = gr.Button("Translate Space")
        gr.Column()
        
    with gr.Row():
        gr.Column()
        with gr.Column():
            md = gr.Markdown("""<h1><center>Translate - 100 Languages</center></h1><h4><center>Translation may not be accurate</center></h4>""")
            with gr.Row():
                lang_from = gr.Dropdown(label="From:", choices=list(lang_id.keys()),value="English")
                lang_to = gr.Dropdown(label="To:", choices=list(lang_id.keys()),value="Chinese")
            submit = gr.Button("Go")
            with gr.Row():
                with gr.Column():
                    message = gr.Textbox(label="Prompt",placeholder="Enter Prompt",lines=4)
                    translated = gr.Textbox(label="Translated",lines=4,interactive=False)
        gr.Column()
    t_submit.click(trans_page,[this,t_space],[this])
    submit.click(trans_to, inputs=[message,lang_from,lang_to], outputs=[translated])
transbot.queue(concurrency_count=20)
transbot.launch()