import gradio as gr import time from PIL import Image from paddleocr import PaddleOCR from transformers import TrOCRProcessor, VisionEncoderDecoderModel import pytesseract import numpy as np # Initialize models paddle_ocr = PaddleOCR(lang='fa', use_textline_orientation=True) trocr_processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-printed") trocr_model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-printed") def run_paddleocr(image): """Run PaddleOCR on image""" image_path = "temp.jpg" image.save(image_path) result = paddle_ocr.ocr(image_path, cls=True) text = ' '.join([line[1][0] for line in result[0]]) if result else '' return text def run_trocr(image): """Run TrOCR on image""" pixel_values = trocr_processor(image, return_tensors="pt").pixel_values generated_ids = trocr_model.generate(pixel_values) return trocr_processor.batch_decode(generated_ids, skip_special_tokens=True)[0] def run_tesseract(image): """Run Tesseract OCR on image""" return pytesseract.image_to_string(image, lang='fas') def compare_models(image): """Compare all three OCR models""" # Convert to RGB if needed if isinstance(image, np.ndarray): image = Image.fromarray(image) image = image.convert("RGB") results = {} # Run PaddleOCR start = time.time() results['PaddleOCR'] = run_paddleocr(image) paddle_time = time.time() - start # Run TrOCR start = time.time() results['TrOCR'] = run_trocr(image) trocr_time = time.time() - start # Run Tesseract start = time.time() results['Tesseract'] = run_tesseract(image) tesseract_time = time.time() - start # Create comparison table comparison = f"""
مدل | متن استخراج شده | زمان پردازش (ثانیه) |
---|---|---|
PaddleOCR | {results['PaddleOCR']} | {paddle_time:.2f} |
TrOCR | {results['TrOCR']} | {trocr_time:.2f} |
Tesseract | {results['Tesseract']} | {tesseract_time:.2f} |