Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,15 @@
|
|
1 |
import gradio as gr
|
2 |
import easyocr
|
3 |
import numpy as np
|
4 |
-
|
5 |
-
from
|
6 |
-
import
|
7 |
-
import
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
# 1. OCR Processor (English)
|
10 |
class OCRProcessor:
|
@@ -18,89 +23,65 @@ class OCRProcessor:
|
|
18 |
except Exception as e:
|
19 |
return f"OCR error: {str(e)}"
|
20 |
|
21 |
-
# 2.
|
22 |
-
|
23 |
-
words = text.split()
|
24 |
-
chunks = []
|
25 |
-
i = 0
|
26 |
-
while i < len(words):
|
27 |
-
chunk = " ".join(words[i:i+chunk_size])
|
28 |
-
chunks.append(chunk)
|
29 |
-
i += chunk_size - overlap
|
30 |
-
return chunks
|
31 |
-
|
32 |
-
# 3. Embedding Agent (English)
|
33 |
-
class EmbeddingAgent:
|
34 |
-
def __init__(self):
|
35 |
-
self.model = SentenceTransformer('all-MiniLM-L6-v2')
|
36 |
-
|
37 |
-
def embed(self, texts):
|
38 |
-
return self.model.encode(texts)
|
39 |
-
|
40 |
-
# 4. Retriever Agent (with FAISS)
|
41 |
-
class RetrieverAgent:
|
42 |
-
def __init__(self, embeddings, texts):
|
43 |
-
self.texts = texts
|
44 |
-
d = embeddings.shape[1]
|
45 |
-
self.index = faiss.IndexFlatL2(d)
|
46 |
-
self.index.add(embeddings)
|
47 |
-
|
48 |
-
def retrieve(self, query_embedding, top_k=1):
|
49 |
-
D, I = self.index.search(query_embedding, top_k)
|
50 |
-
return [self.texts[idx] for idx in I[0]]
|
51 |
-
|
52 |
-
# 5. QA Agent (English QA model)
|
53 |
-
class EnglishQAModel:
|
54 |
def __init__(self):
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
)
|
60 |
|
61 |
-
def
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
-
# Full DocQA Pipeline (English)
|
74 |
ocr_processor = OCRProcessor()
|
75 |
-
|
76 |
-
qa_agent = EnglishQAModel()
|
77 |
|
78 |
def docqa_pipeline(image, question):
|
79 |
# 1. OCR
|
80 |
context = ocr_processor.extract_text(image)
|
81 |
if context.startswith("OCR error"):
|
82 |
return context, "No answer."
|
83 |
-
|
84 |
-
|
85 |
-
chunks = text_chunker(context)
|
86 |
-
|
87 |
-
# 3. Embedding
|
88 |
-
chunk_embeddings = embedder_agent.embed(chunks)
|
89 |
-
question_embedding = embedder_agent.embed([question])
|
90 |
-
|
91 |
-
# 4. Retrieval
|
92 |
-
retriever = RetrieverAgent(chunk_embeddings, chunks)
|
93 |
-
relevant_chunk = retriever.retrieve(question_embedding, top_k=1)[0]
|
94 |
-
|
95 |
-
# 5. QA
|
96 |
-
answer = qa_agent.answer_question(relevant_chunk, question)
|
97 |
return context, f"Relevant chunk:\n{relevant_chunk}\n\nModel answer:\n{answer}"
|
98 |
|
99 |
-
with gr.Blocks(title="DocQA Agent: Intelligent Q&A from Extracted English Document") as app:
|
100 |
gr.Markdown("""
|
101 |
-
# DocQA Agent
|
102 |
<br>
|
103 |
-
A multi-agent system for question answering from English documents (OCR + retrieval + intelligent answer)
|
104 |
""")
|
105 |
with gr.Row():
|
106 |
with gr.Column():
|
|
|
1 |
import gradio as gr
|
2 |
import easyocr
|
3 |
import numpy as np
|
4 |
+
|
5 |
+
from langchain_community.llms import HuggingFacePipeline
|
6 |
+
from langchain.chains import RetrievalQA
|
7 |
+
from langchain_community.vectorstores import FAISS
|
8 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
9 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
10 |
+
from langchain.docstore.document import Document
|
11 |
+
|
12 |
+
from transformers import pipeline as hf_pipeline
|
13 |
|
14 |
# 1. OCR Processor (English)
|
15 |
class OCRProcessor:
|
|
|
23 |
except Exception as e:
|
24 |
return f"OCR error: {str(e)}"
|
25 |
|
26 |
+
# 2. LangChain-based DocQA Agent
|
27 |
+
class LangChainDocQAAgent:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
def __init__(self):
|
29 |
+
# Embedding model
|
30 |
+
self.embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
31 |
+
# Text splitter (chunk size and overlap for better retrieval)
|
32 |
+
self.text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
33 |
+
# HuggingFace QA pipeline as an LLM
|
34 |
+
self.qa_llm = HuggingFacePipeline(
|
35 |
+
pipeline=hf_pipeline(
|
36 |
+
"question-answering",
|
37 |
+
model="deepset/roberta-base-squad2",
|
38 |
+
tokenizer="deepset/roberta-base-squad2"
|
39 |
+
),
|
40 |
+
model_kwargs={"return_full_text": False}
|
41 |
)
|
42 |
|
43 |
+
def prepare_retriever(self, text):
|
44 |
+
# Split text into LangChain Document objects
|
45 |
+
docs = [Document(page_content=chunk) for chunk in self.text_splitter.split_text(text)]
|
46 |
+
# Create FAISS vectorstore for retrieval
|
47 |
+
vectorstore = FAISS.from_documents(docs, self.embeddings)
|
48 |
+
return vectorstore.as_retriever(), docs
|
49 |
+
|
50 |
+
def qa(self, text, question):
|
51 |
+
if not text.strip() or not question.strip():
|
52 |
+
return "No text or question provided.", ""
|
53 |
+
# Build retriever from text
|
54 |
+
retriever, docs = self.prepare_retriever(text)
|
55 |
+
# RetrievalQA chain: retrieve relevant chunk and answer
|
56 |
+
qa_chain = RetrievalQA.from_chain_type(
|
57 |
+
llm=self.qa_llm,
|
58 |
+
chain_type="stuff",
|
59 |
+
retriever=retriever,
|
60 |
+
return_source_documents=True
|
61 |
+
)
|
62 |
+
result = qa_chain({"query": question})
|
63 |
+
answer = result["result"]
|
64 |
+
# Show the most relevant chunk as context
|
65 |
+
relevant_context = result["source_documents"][0].page_content if result["source_documents"] else ""
|
66 |
+
return relevant_context, answer
|
67 |
|
|
|
68 |
ocr_processor = OCRProcessor()
|
69 |
+
docqa_agent = LangChainDocQAAgent()
|
|
|
70 |
|
71 |
def docqa_pipeline(image, question):
|
72 |
# 1. OCR
|
73 |
context = ocr_processor.extract_text(image)
|
74 |
if context.startswith("OCR error"):
|
75 |
return context, "No answer."
|
76 |
+
# 2. LangChain RetrievalQA
|
77 |
+
relevant_chunk, answer = docqa_agent.qa(context, question)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
return context, f"Relevant chunk:\n{relevant_chunk}\n\nModel answer:\n{answer}"
|
79 |
|
80 |
+
with gr.Blocks(title="DocQA Agent (LangChain): Intelligent Q&A from Extracted English Document") as app:
|
81 |
gr.Markdown("""
|
82 |
+
# DocQA Agent (LangChain)
|
83 |
<br>
|
84 |
+
A multi-agent system for question answering from English documents (OCR + retrieval + intelligent answer with LangChain)
|
85 |
""")
|
86 |
with gr.Row():
|
87 |
with gr.Column():
|