Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,9 @@
|
|
1 |
import gradio as gr
|
2 |
import time
|
|
|
3 |
from PIL import Image
|
4 |
from paddleocr import PaddleOCR
|
5 |
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
|
6 |
-
import pytesseract
|
7 |
-
import numpy as np
|
8 |
|
9 |
# Initialize models
|
10 |
paddle_ocr = PaddleOCR(lang='fa', use_textline_orientation=True)
|
@@ -13,99 +12,90 @@ trocr_model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-pr
|
|
13 |
|
14 |
def run_paddleocr(image):
|
15 |
"""Run PaddleOCR on image"""
|
16 |
-
|
17 |
-
image.
|
18 |
-
|
|
|
|
|
19 |
text = ' '.join([line[1][0] for line in result[0]]) if result else ''
|
20 |
return text
|
21 |
|
22 |
def run_trocr(image):
|
23 |
"""Run TrOCR on image"""
|
|
|
|
|
|
|
|
|
24 |
pixel_values = trocr_processor(image, return_tensors="pt").pixel_values
|
25 |
generated_ids = trocr_model.generate(pixel_values)
|
26 |
return trocr_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
27 |
|
28 |
-
def run_tesseract(image):
|
29 |
-
"""Run Tesseract OCR on image"""
|
30 |
-
return pytesseract.image_to_string(image, lang='fas')
|
31 |
-
|
32 |
def compare_models(image):
|
33 |
-
"""Compare
|
34 |
# Convert to RGB if needed
|
35 |
if isinstance(image, np.ndarray):
|
36 |
image = Image.fromarray(image)
|
37 |
image = image.convert("RGB")
|
38 |
|
39 |
results = {}
|
|
|
40 |
|
41 |
# Run PaddleOCR
|
42 |
start = time.time()
|
43 |
results['PaddleOCR'] = run_paddleocr(image)
|
44 |
-
|
45 |
|
46 |
# Run TrOCR
|
47 |
start = time.time()
|
48 |
results['TrOCR'] = run_trocr(image)
|
49 |
-
|
50 |
-
|
51 |
-
# Run Tesseract
|
52 |
-
start = time.time()
|
53 |
-
results['Tesseract'] = run_tesseract(image)
|
54 |
-
tesseract_time = time.time() - start
|
55 |
|
56 |
# Create comparison table
|
57 |
comparison = f"""
|
58 |
-
<table>
|
59 |
-
<tr>
|
60 |
-
<th>مدل</th>
|
61 |
-
<th>متن استخراج شده</th>
|
62 |
-
<th>زمان پردازش (ثانیه)</th>
|
63 |
-
</tr>
|
64 |
<tr>
|
65 |
-
<
|
66 |
-
<
|
67 |
-
<
|
68 |
</tr>
|
69 |
<tr>
|
70 |
-
<td>
|
71 |
-
<td>{results['
|
72 |
-
<td>{
|
73 |
</tr>
|
74 |
<tr>
|
75 |
-
<td>
|
76 |
-
<td>{results['
|
77 |
-
<td>{
|
78 |
</tr>
|
79 |
</table>
|
80 |
"""
|
81 |
|
82 |
-
return comparison, results['PaddleOCR'], results['TrOCR']
|
83 |
|
84 |
# Create Gradio interface
|
85 |
with gr.Blocks(title="مقایسه مدلهای OCR فارسی") as demo:
|
86 |
gr.Markdown("""
|
87 |
## مقایسه عملکرد مدلهای OCR برای زبان فارسی
|
88 |
-
این برنامه
|
89 |
1. PaddleOCR
|
90 |
2. TrOCR (مایکروسافت)
|
91 |
-
3. Tesseract OCR
|
92 |
""")
|
93 |
|
94 |
with gr.Row():
|
95 |
with gr.Column():
|
96 |
image_input = gr.Image(label="تصویر ورودی", type="pil")
|
97 |
-
submit_btn = gr.Button("مقایسه مدلها")
|
98 |
|
99 |
with gr.Column():
|
100 |
comparison_output = gr.HTML(label="نتایج مقایسه")
|
101 |
paddle_output = gr.Textbox(label="PaddleOCR")
|
102 |
trocr_output = gr.Textbox(label="TrOCR")
|
103 |
-
tesseract_output = gr.Textbox(label="Tesseract")
|
104 |
|
105 |
submit_btn.click(
|
106 |
fn=compare_models,
|
107 |
inputs=image_input,
|
108 |
-
outputs=[comparison_output, paddle_output, trocr_output
|
109 |
)
|
110 |
|
111 |
if __name__ == "__main__":
|
|
|
1 |
import gradio as gr
|
2 |
import time
|
3 |
+
import numpy as np
|
4 |
from PIL import Image
|
5 |
from paddleocr import PaddleOCR
|
6 |
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
|
|
|
|
|
7 |
|
8 |
# Initialize models
|
9 |
paddle_ocr = PaddleOCR(lang='fa', use_textline_orientation=True)
|
|
|
12 |
|
13 |
def run_paddleocr(image):
|
14 |
"""Run PaddleOCR on image"""
|
15 |
+
# Convert to numpy array if needed
|
16 |
+
if isinstance(image, Image.Image):
|
17 |
+
image = np.array(image)
|
18 |
+
|
19 |
+
result = paddle_ocr.ocr(image, cls=True)
|
20 |
text = ' '.join([line[1][0] for line in result[0]]) if result else ''
|
21 |
return text
|
22 |
|
23 |
def run_trocr(image):
|
24 |
"""Run TrOCR on image"""
|
25 |
+
# Convert to PIL Image if needed
|
26 |
+
if isinstance(image, np.ndarray):
|
27 |
+
image = Image.fromarray(image)
|
28 |
+
|
29 |
pixel_values = trocr_processor(image, return_tensors="pt").pixel_values
|
30 |
generated_ids = trocr_model.generate(pixel_values)
|
31 |
return trocr_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
32 |
|
|
|
|
|
|
|
|
|
33 |
def compare_models(image):
|
34 |
+
"""Compare PaddleOCR and TrOCR models"""
|
35 |
# Convert to RGB if needed
|
36 |
if isinstance(image, np.ndarray):
|
37 |
image = Image.fromarray(image)
|
38 |
image = image.convert("RGB")
|
39 |
|
40 |
results = {}
|
41 |
+
times = {}
|
42 |
|
43 |
# Run PaddleOCR
|
44 |
start = time.time()
|
45 |
results['PaddleOCR'] = run_paddleocr(image)
|
46 |
+
times['PaddleOCR'] = time.time() - start
|
47 |
|
48 |
# Run TrOCR
|
49 |
start = time.time()
|
50 |
results['TrOCR'] = run_trocr(image)
|
51 |
+
times['TrOCR'] = time.time() - start
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
# Create comparison table
|
54 |
comparison = f"""
|
55 |
+
<table style="width:100%">
|
|
|
|
|
|
|
|
|
|
|
56 |
<tr>
|
57 |
+
<th style="text-align:center">مدل</th>
|
58 |
+
<th style="text-align:center">متن استخراج شده</th>
|
59 |
+
<th style="text-align:center">زمان پردازش (ثانیه)</th>
|
60 |
</tr>
|
61 |
<tr>
|
62 |
+
<td style="text-align:center">PaddleOCR</td>
|
63 |
+
<td style="text-align:right; direction:rtl">{results['PaddleOCR']}</td>
|
64 |
+
<td style="text-align:center">{times['PaddleOCR']:.3f}</td>
|
65 |
</tr>
|
66 |
<tr>
|
67 |
+
<td style="text-align:center">TrOCR</td>
|
68 |
+
<td style="text-align:right; direction:rtl">{results['TrOCR']}</td>
|
69 |
+
<td style="text-align:center">{times['TrOCR']:.3f}</td>
|
70 |
</tr>
|
71 |
</table>
|
72 |
"""
|
73 |
|
74 |
+
return comparison, results['PaddleOCR'], results['TrOCR']
|
75 |
|
76 |
# Create Gradio interface
|
77 |
with gr.Blocks(title="مقایسه مدلهای OCR فارسی") as demo:
|
78 |
gr.Markdown("""
|
79 |
## مقایسه عملکرد مدلهای OCR برای زبان فارسی
|
80 |
+
این برنامه دو مدل مختلف OCR را روی تصاویر فارسی مقایسه میکند:
|
81 |
1. PaddleOCR
|
82 |
2. TrOCR (مایکروسافت)
|
|
|
83 |
""")
|
84 |
|
85 |
with gr.Row():
|
86 |
with gr.Column():
|
87 |
image_input = gr.Image(label="تصویر ورودی", type="pil")
|
88 |
+
submit_btn = gr.Button("مقایسه مدلها", variant="primary")
|
89 |
|
90 |
with gr.Column():
|
91 |
comparison_output = gr.HTML(label="نتایج مقایسه")
|
92 |
paddle_output = gr.Textbox(label="PaddleOCR")
|
93 |
trocr_output = gr.Textbox(label="TrOCR")
|
|
|
94 |
|
95 |
submit_btn.click(
|
96 |
fn=compare_models,
|
97 |
inputs=image_input,
|
98 |
+
outputs=[comparison_output, paddle_output, trocr_output]
|
99 |
)
|
100 |
|
101 |
if __name__ == "__main__":
|