Spaces:
Runtime error
Runtime error
from transformers import pipeline, SamModel, SamProcessor | |
import torch | |
import numpy as np | |
import spaces | |
checkpoint = "google/owlvit-base-patch16" | |
detector = pipeline(model=checkpoint, task="zero-shot-object-detection") | |
sam_model = SamModel.from_pretrained("facebook/sam-vit-base").to("cuda") | |
sam_processor = SamProcessor.from_pretrained("facebook/sam-vit-base") | |
def query(image, texts, threshold): | |
texts = texts.split(",") | |
print(texts) | |
print(image.size) | |
predictions = detector( | |
image, | |
candidate_labels=texts, | |
) | |
print(predictions) | |
result_labels = [] | |
for pred in predictions: | |
box = pred["box"] | |
score = pred["score"] | |
label = pred["label"] | |
box = [round(pred["box"]["xmin"], 2), round(pred["box"]["ymin"], 2), | |
round(pred["box"]["xmax"], 2), round(pred["box"]["ymax"], 2)] | |
inputs = sam_processor( | |
image, | |
input_boxes=[[[box]]], | |
return_tensors="pt" | |
).to("cuda") | |
with torch.no_grad(): | |
outputs = sam_model(**inputs) | |
mask = sam_processor.image_processor.post_process_masks( | |
outputs.pred_masks.cpu(), | |
inputs["original_sizes"].cpu(), | |
inputs["reshaped_input_sizes"].cpu() | |
)[0][0][0].numpy() | |
mask = mask[np.newaxis, ...] | |
result_labels.append((mask, label)) | |
return image, result_labels | |
import gradio as gr | |
description = "This Space combines OWLv2, the state-of-the-art zero-shot object detection model with SAM, the state-of-the-art mask generation model. SAM normally doesn't accept text input. Combining SAM with OWLv2 makes SAM text promptable." | |
demo = gr.Interface( | |
query, | |
inputs=[gr.Image(type="pil"), "text", gr.Slider(0, 1, value=0.2)], | |
outputs="annotatedimage", | |
title="OWL π€ SAM", | |
description=description, | |
examples=[ | |
["./cats.png", "cat", 0.1], | |
], | |
cache_examples=True | |
) | |
demo.launch(debug=True) |