Spaces:
Running
on
Zero
Running
on
Zero
update app.py
Browse files
app.py
CHANGED
@@ -149,12 +149,15 @@ demo = gr.Interface(
|
|
149 |
gr.Plot(label="MLQA Dataset"),
|
150 |
gr.Plot(label="ARCD Dataset")
|
151 |
],
|
152 |
-
title="Arabic Embedding
|
153 |
description=(
|
154 |
-
"Evaluate your Sentence Transformer model on **
|
155 |
-
"
|
156 |
-
"
|
157 |
-
"
|
|
|
|
|
|
|
158 |
),
|
159 |
theme="default",
|
160 |
live=False,
|
|
|
149 |
gr.Plot(label="MLQA Dataset"),
|
150 |
gr.Plot(label="ARCD Dataset")
|
151 |
],
|
152 |
+
title="Evaluation of Arabic Matroyshka Embedding on Retrieval Tasks",
|
153 |
description=(
|
154 |
+
"Evaluate your Embedding model or any Arabic Sentence Transformer model's performance on **context and question retrieval** for Arabic datasets for Enhancing RAG (Retrieval-Augmented Generation).\n"
|
155 |
+
"- **ARCD** evaluates short context retrieval performance.\n"
|
156 |
+
"- **MLQA Arabic** evaluates long context retrieval performance.\n"
|
157 |
+
"- **Arabic Financial Dataset** focuses on financial context retrieval.\n\n"
|
158 |
+
"**Evaluation Metric:**\n"
|
159 |
+
"The evaluation uses **NDCG@10** (Normalized Discounted Cumulative Gain), which measures how well the retrieved documents (contexts) match the query relevance.\n"
|
160 |
+
"Higher scores indicate better performance. Embedding dimensions are reduced from 768 to 64, evaluating how well the model performs with fewer dimensions."
|
161 |
),
|
162 |
theme="default",
|
163 |
live=False,
|