update utils.py
Browse files- src/display/utils.py +96 -31
src/display/utils.py
CHANGED
@@ -39,30 +39,16 @@ COLUMNS.append(
|
|
39 |
)
|
40 |
|
41 |
# Include per-subject accuracy columns based on your subjects
|
42 |
-
# Remove unwanted subjects from here
|
43 |
for task in Tasks:
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
"Art",
|
52 |
-
"Physics",
|
53 |
-
"Chemistry",
|
54 |
-
"Biology",
|
55 |
-
"Computer_Science",
|
56 |
-
]:
|
57 |
-
COLUMNS.append(
|
58 |
-
ColumnContent(
|
59 |
-
name=task.value.benchmark,
|
60 |
-
type=float,
|
61 |
-
label=f"{task.value.col_name} (%)",
|
62 |
-
description=f"Accuracy on {task.value.col_name}",
|
63 |
-
displayed_by_default=True, # Set to True to display by default
|
64 |
-
)
|
65 |
)
|
|
|
66 |
|
67 |
# Additional columns
|
68 |
COLUMNS.extend([
|
@@ -71,47 +57,126 @@ COLUMNS.extend([
|
|
71 |
type=str,
|
72 |
label="Model Type",
|
73 |
description="Type of the model (e.g., Transformer, RNN, etc.)",
|
74 |
-
displayed_by_default=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
),
|
76 |
ColumnContent(
|
77 |
name="weight_type",
|
78 |
type=str,
|
79 |
label="Weight Type",
|
80 |
description="Type of model weights (e.g., Original, Delta, Adapter)",
|
81 |
-
displayed_by_default=
|
82 |
),
|
83 |
ColumnContent(
|
84 |
name="precision",
|
85 |
type=str,
|
86 |
label="Precision",
|
87 |
description="Precision of the model weights (e.g., float16)",
|
88 |
-
displayed_by_default=
|
89 |
),
|
90 |
ColumnContent(
|
91 |
name="license",
|
92 |
type=str,
|
93 |
label="License",
|
94 |
description="License of the model",
|
95 |
-
displayed_by_default=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
),
|
97 |
ColumnContent(
|
98 |
name="likes",
|
99 |
type=int,
|
100 |
label="Likes",
|
101 |
description="Number of likes on the Hugging Face Hub",
|
102 |
-
displayed_by_default=
|
103 |
),
|
104 |
ColumnContent(
|
105 |
name="still_on_hub",
|
106 |
type=bool,
|
107 |
label="Available on the Hub",
|
108 |
description="Whether the model is still available on the Hugging Face Hub",
|
109 |
-
displayed_by_default=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
),
|
111 |
])
|
112 |
|
113 |
# Now we can create lists of column names for use in the application
|
114 |
COLS = [col.name for col in COLUMNS]
|
115 |
-
BENCHMARK_COLS = [col.name for col in COLUMNS if col.name not in [
|
116 |
-
|
117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
)
|
40 |
|
41 |
# Include per-subject accuracy columns based on your subjects
|
|
|
42 |
for task in Tasks:
|
43 |
+
COLUMNS.append(
|
44 |
+
ColumnContent(
|
45 |
+
name=task.value.benchmark,
|
46 |
+
type=float,
|
47 |
+
label=f"{task.value.col_name} (%)",
|
48 |
+
description=f"Accuracy on {task.value.col_name}",
|
49 |
+
displayed_by_default=False,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
)
|
51 |
+
)
|
52 |
|
53 |
# Additional columns
|
54 |
COLUMNS.extend([
|
|
|
57 |
type=str,
|
58 |
label="Model Type",
|
59 |
description="Type of the model (e.g., Transformer, RNN, etc.)",
|
60 |
+
displayed_by_default=False,
|
61 |
+
),
|
62 |
+
ColumnContent(
|
63 |
+
name="architecture",
|
64 |
+
type=str,
|
65 |
+
label="Architecture",
|
66 |
+
description="Model architecture",
|
67 |
+
displayed_by_default=False,
|
68 |
),
|
69 |
ColumnContent(
|
70 |
name="weight_type",
|
71 |
type=str,
|
72 |
label="Weight Type",
|
73 |
description="Type of model weights (e.g., Original, Delta, Adapter)",
|
74 |
+
displayed_by_default=False,
|
75 |
),
|
76 |
ColumnContent(
|
77 |
name="precision",
|
78 |
type=str,
|
79 |
label="Precision",
|
80 |
description="Precision of the model weights (e.g., float16)",
|
81 |
+
displayed_by_default=False,
|
82 |
),
|
83 |
ColumnContent(
|
84 |
name="license",
|
85 |
type=str,
|
86 |
label="License",
|
87 |
description="License of the model",
|
88 |
+
displayed_by_default=False,
|
89 |
+
),
|
90 |
+
ColumnContent(
|
91 |
+
name="params",
|
92 |
+
type=float,
|
93 |
+
label="Parameters (B)",
|
94 |
+
description="Number of model parameters in billions",
|
95 |
+
displayed_by_default=False,
|
96 |
),
|
97 |
ColumnContent(
|
98 |
name="likes",
|
99 |
type=int,
|
100 |
label="Likes",
|
101 |
description="Number of likes on the Hugging Face Hub",
|
102 |
+
displayed_by_default=False,
|
103 |
),
|
104 |
ColumnContent(
|
105 |
name="still_on_hub",
|
106 |
type=bool,
|
107 |
label="Available on the Hub",
|
108 |
description="Whether the model is still available on the Hugging Face Hub",
|
109 |
+
displayed_by_default=False,
|
110 |
+
),
|
111 |
+
ColumnContent(
|
112 |
+
name="revision",
|
113 |
+
type=str,
|
114 |
+
label="Model Revision",
|
115 |
+
description="Model revision or commit hash",
|
116 |
+
displayed_by_default=False,
|
117 |
),
|
118 |
])
|
119 |
|
120 |
# Now we can create lists of column names for use in the application
|
121 |
COLS = [col.name for col in COLUMNS]
|
122 |
+
BENCHMARK_COLS = [col.name for col in COLUMNS if col.name not in ["model", "average", "model_type", "architecture", "weight_type", "precision", "license", "params", "likes", "still_on_hub", "revision"]]
|
123 |
+
|
124 |
+
# For the queue columns in the submission tab
|
125 |
+
@dataclass(frozen=True)
|
126 |
+
class EvalQueueColumn:
|
127 |
+
model: str
|
128 |
+
revision: str
|
129 |
+
private: bool
|
130 |
+
precision: str
|
131 |
+
weight_type: str
|
132 |
+
status: str
|
133 |
+
|
134 |
+
EVAL_COLS = ["model", "revision", "private", "precision", "weight_type", "status"]
|
135 |
+
EVAL_TYPES = [str, str, bool, str, str, str]
|
136 |
+
|
137 |
+
## All the model information that we might need
|
138 |
+
@dataclass
|
139 |
+
class ModelDetails:
|
140 |
+
name: str
|
141 |
+
display_name: str = ""
|
142 |
+
symbol: str = "" # emoji
|
143 |
+
|
144 |
+
class ModelType(Enum):
|
145 |
+
PT = ModelDetails(name="pretrained", symbol="🟢")
|
146 |
+
FT = ModelDetails(name="fine-tuned", symbol="🔶")
|
147 |
+
IFT = ModelDetails(name="instruction-tuned", symbol="â•")
|
148 |
+
RL = ModelDetails(name="RL-tuned", symbol="🟦")
|
149 |
+
Unknown = ModelDetails(name="", symbol="?")
|
150 |
+
|
151 |
+
def to_str(self, separator=" "):
|
152 |
+
return f"{self.value.symbol}{separator}{self.value.name}"
|
153 |
+
|
154 |
+
@staticmethod
|
155 |
+
def from_str(type_str):
|
156 |
+
if "fine-tuned" in type_str or "🔶" in type_str:
|
157 |
+
return ModelType.FT
|
158 |
+
if "pretrained" in type_str or "🟢" in type_str:
|
159 |
+
return ModelType.PT
|
160 |
+
if "RL-tuned" in type_str or "🟦" in type_str:
|
161 |
+
return ModelType.RL
|
162 |
+
if "instruction-tuned" in type_str or "â•" in type_str:
|
163 |
+
return ModelType.IFT
|
164 |
+
return ModelType.Unknown
|
165 |
+
|
166 |
+
class WeightType(Enum):
|
167 |
+
Adapter = "Adapter"
|
168 |
+
Original = "Original"
|
169 |
+
Delta = "Delta"
|
170 |
+
|
171 |
+
class Precision(Enum):
|
172 |
+
float16 = "float16"
|
173 |
+
bfloat16 = "bfloat16"
|
174 |
+
Unknown = "Unknown"
|
175 |
+
|
176 |
+
@staticmethod
|
177 |
+
def from_str(precision_str):
|
178 |
+
if precision_str in ["torch.float16", "float16"]:
|
179 |
+
return Precision.float16
|
180 |
+
if precision_str in ["torch.bfloat16", "bfloat16"]:
|
181 |
+
return Precision.bfloat16
|
182 |
+
return Precision.Unknown
|