Update src/populate.py
Browse files- src/populate.py +70 -1
src/populate.py
CHANGED
@@ -1 +1,70 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pandas as pd
|
3 |
+
import json
|
4 |
+
|
5 |
+
from src.display.utils import COLUMNS, EVAL_COLS, Tasks
|
6 |
+
from src.envs import EVAL_RESULTS_PATH
|
7 |
+
|
8 |
+
def get_leaderboard_df(eval_results_path, eval_requests_path, cols, benchmark_cols):
|
9 |
+
# Initialize an empty DataFrame
|
10 |
+
df = pd.DataFrame(columns=cols)
|
11 |
+
|
12 |
+
# Load evaluation results from JSON files
|
13 |
+
if os.path.exists(eval_results_path):
|
14 |
+
result_files = [
|
15 |
+
os.path.join(eval_results_path, f)
|
16 |
+
for f in os.listdir(eval_results_path)
|
17 |
+
if f.endswith('.json')
|
18 |
+
]
|
19 |
+
data_list = []
|
20 |
+
for file in result_files:
|
21 |
+
with open(file, 'r') as f:
|
22 |
+
data = json.load(f)
|
23 |
+
flattened_data = {}
|
24 |
+
flattened_data.update(data.get('config', {}))
|
25 |
+
flattened_data.update(data.get('results', {}))
|
26 |
+
data_list.append(flattened_data)
|
27 |
+
if data_list:
|
28 |
+
df = pd.DataFrame(data_list)
|
29 |
+
|
30 |
+
# Ensure DataFrame has all columns
|
31 |
+
for col in cols:
|
32 |
+
if col not in df.columns:
|
33 |
+
df[col] = None
|
34 |
+
|
35 |
+
# Convert 'average' column to float and handle errors
|
36 |
+
if 'average' in df.columns:
|
37 |
+
df['average'] = pd.to_numeric(df['average'], errors='coerce')
|
38 |
+
|
39 |
+
# Sort by 'average' column if it exists
|
40 |
+
if 'average' in df.columns:
|
41 |
+
df = df.sort_values(by=['average'], ascending=False)
|
42 |
+
|
43 |
+
return df
|
44 |
+
|
45 |
+
def get_evaluation_queue_df(eval_requests_path, eval_cols):
|
46 |
+
# Initialize empty DataFrames
|
47 |
+
finished_df = pd.DataFrame(columns=eval_cols)
|
48 |
+
running_df = pd.DataFrame(columns=eval_cols)
|
49 |
+
pending_df = pd.DataFrame(columns=eval_cols)
|
50 |
+
|
51 |
+
# Load evaluation requests from JSON files
|
52 |
+
if os.path.exists(eval_requests_path):
|
53 |
+
request_files = [
|
54 |
+
os.path.join(eval_requests_path, f)
|
55 |
+
for f in os.listdir(eval_requests_path)
|
56 |
+
if f.endswith('.json')
|
57 |
+
]
|
58 |
+
data_list = []
|
59 |
+
for file in request_files:
|
60 |
+
with open(file, 'r') as f:
|
61 |
+
data = json.load(f)
|
62 |
+
data_list.append(data)
|
63 |
+
if data_list:
|
64 |
+
df = pd.DataFrame(data_list)
|
65 |
+
# Split DataFrame based on status
|
66 |
+
finished_df = df[df['status'] == 'finished']
|
67 |
+
running_df = df[df['status'] == 'running']
|
68 |
+
pending_df = df[df['status'] == 'pending']
|
69 |
+
|
70 |
+
return finished_df, running_df, pending_df
|