File size: 9,938 Bytes
aa37927
 
 
22c3520
4b7beb0
96f572b
 
 
 
 
 
 
aa37927
4159f5f
aa37927
 
 
 
 
 
 
cafafe0
486bbdb
aa37927
 
 
4b7beb0
 
 
 
 
 
 
 
 
 
96f572b
4b7beb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e58d876
4b7beb0
 
 
96f572b
4b7beb0
 
96f572b
4b7beb0
 
 
560f753
83fc769
9d42a0b
96f572b
 
 
 
 
 
 
 
 
 
 
91e6eee
 
96f572b
4159f5f
 
9d42a0b
96f572b
4159f5f
 
96f572b
 
 
 
 
 
 
 
 
 
 
 
4b7beb0
 
96f572b
 
 
4159f5f
 
 
 
 
 
 
 
 
 
 
 
 
96f572b
 
4b7beb0
96f572b
4159f5f
96f572b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91e6eee
96f572b
4b7beb0
96f572b
 
 
 
 
 
4b7beb0
96f572b
4b7beb0
 
 
96f572b
4b7beb0
 
 
96f572b
4b7beb0
96f572b
4b7beb0
96f572b
 
4b7beb0
 
 
 
91e6eee
aa37927
 
 
 
 
 
402ebfa
aa37927
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96f572b
 
9d42a0b
96f572b
 
 
 
aa37927
96f572b
 
 
4159f5f
402ebfa
 
 
96f572b
402ebfa
 
96f572b
 
 
 
 
 
4b7beb0
96f572b
 
 
 
4b7beb0
 
 
aa37927
96f572b
 
 
402ebfa
96f572b
 
aa37927
96f572b
 
 
aa37927
96f572b
aa37927
 
96f572b
 
aa37927
22c3520
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import json
import os
from datetime import datetime, timezone
import random

import torch
import pandas as pd
import numpy as np
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForCausalLM
from langchain.prompts import PromptTemplate

from src.display.formatting import styled_error, styled_message, styled_warning
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO, EVAL_RESULTS_PATH, RESULTS_REPO
from src.submission.check_validity import (
    already_submitted_models,
    check_model_card,
    get_model_size,
    is_model_on_hub,
)

import spaces

REQUESTED_MODELS = None
USERS_TO_SUBMISSION_DATES = None

# List of subjects to exclude from evaluation
excluded_subjects = [
    "human_sexuality",
    "professional_psychology",
    "moral_disputes",
    "public_relations",
    "jurisprudence",
    "human_aging",
    "world_religions"
]

def get_top_prediction(text, tokenizer, model):
    inputs = tokenizer(text, return_tensors='pt')
    if torch.cuda.is_available():
        model = model.cuda()
        inputs = {k: v.cuda() for k, v in inputs.items()}
    else:
        model = model.cpu()
        inputs = {k: v.cpu() for k, v in inputs.items()}

    with torch.no_grad():
        outputs = model(**inputs)
        logits = outputs.logits[0, -1]  # Get logits of the last token

    options = [' A', ' B', ' C', ' D']
    option_logits = []

    # Iterate through each option
    for option in options:
        option_ids = tokenizer(option).input_ids
        # Ensure option_ids are within range and not empty
        if option_ids and option_ids[-1] < logits.size(0):
            option_id = option_ids[-1]
            option_logit = logits[option_id]
            option_logits.append((option_logit.item(), option.strip()))
        else:
            print(f"Skipping option '{option}' due to index out of range.")

    if not option_logits:
        return "No valid options"

    # Get the option with the highest logit
    top_option = max(option_logits, key=lambda x: x[0])[1]
    return top_option

@spaces.GPU(duration=120)
def evaluate_model_accuracy_by_subject(model_name, num_questions_per_subject=100):
    try:
        # Load the model and tokenizer
        tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
        tokenizer.pad_token = tokenizer.eos_token

        model = AutoModelForCausalLM.from_pretrained(
            model_name,
            trust_remote_code=True
        )
        if torch.cuda.is_available():
            model = model.cuda()  # Move model to GPU if available
        else:
            model = model.cpu()

        # Load your custom MMMLU dataset from HuggingFace
        dataset = load_dataset("Omartificial-Intelligence-Space/Arabic_Openai_MMMLU")
        dataset = dataset['test'[:100]]

        # Filter out excluded subjects
        dataset = dataset.filter(lambda x: x['Subject'] not in excluded_subjects)

        # Define prompt template
        template = """Answer the following multiple choice question by giving the most appropriate response. Answer should be one among [A, B, C, D].
Question: {Question}
A) {A}
B) {B}
C) {C}
D) {D}
Answer:"""

        prompt_template = PromptTemplate(template=template, input_variables=['Question', 'A', 'B', 'C', 'D'])

        # Initialize results storage
        subject_results = {}
        overall_correct_predictions = 0
        overall_total_questions = 0

        subjects = dataset.unique('Subject')
        for subject in subjects:
            subject_data = dataset.filter(lambda x: x['Subject'] == subject)

            # Sample num_questions_per_subject from each subject
            if num_questions_per_subject > 0:
                if len(subject_data) < num_questions_per_subject:
                    print(f"Warning: Not enough questions for subject '{subject}'. Using all available questions.")
                    selected_indices = range(len(subject_data))
                else:
                    selected_indices = random.sample(range(len(subject_data)), num_questions_per_subject)
                subject_data = subject_data.select(selected_indices)

            correct_predictions = 0
            total_questions = 0
            results = []

            for data in subject_data:
                # Prepare text input
                text = prompt_template.format(
                    Question=data['Question'],
                    A=data['A'],
                    B=data['B'],
                    C=data['C'],
                    D=data['D']
                )

                # Get the top prediction
                top_prediction = get_top_prediction(text, tokenizer, model)
                is_correct = (top_prediction == data['Answer'])
                correct_predictions += int(is_correct)
                total_questions += 1
                overall_correct_predictions += int(is_correct)
                overall_total_questions += 1

                results.append({
                    'Question': data['Question'],
                    'Answer': data['Answer'],
                    'Prediction': top_prediction,
                    'Correct': is_correct
                })

            accuracy = correct_predictions / total_questions if total_questions > 0 else 0

            # Store results for this subject
            subject_results[subject] = {
                'Correct Predictions': correct_predictions,
                'Total Questions': total_questions,
                'Accuracy': accuracy * 100,
                'Results DataFrame': pd.DataFrame(results)
            }

        overall_accuracy = (overall_correct_predictions / overall_total_questions) * 100 if overall_total_questions > 0 else 0

        return overall_accuracy, subject_results

    except Exception as e:
        import traceback
        tb = traceback.format_exc()
        print(f"Error in evaluate_model_accuracy_by_subject: {e}\n{tb}")
        return f"Error: {str(e)}", {}

def add_new_eval(
    model: str,
    base_model: str,
    revision: str,
    precision: str,
    weight_type: str,
    model_type: str
):
    global REQUESTED_MODELS
    global USERS_TO_SUBMISSION_DATES
    if not REQUESTED_MODELS:
        REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)

    user_name = ""
    model_path = model
    if "/" in model:
        user_name = model.split("/")[0]
        model_path = model.split("/")[1]

    precision = precision.split(" ")[0]
    current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")

    if model_type is None or model_type == "":
        return styled_error("Please select a model type.")

    # Does the model actually exist?
    if revision == "":
        revision = "main"

    # Is the model on the hub?
    if weight_type in ["Delta", "Adapter"]:
        base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
        if not base_model_on_hub:
            return styled_error(f'Base model "{base_model}" {error}')

    if not weight_type == "Adapter":
        model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
        if not model_on_hub:
            return styled_error(f'Model "{model}" {error}')

    # Is the model info correctly filled?
    try:
        model_info = API.model_info(repo_id=model, revision=revision)
    except Exception:
        return styled_error("Could not get your model information. Please fill it up properly.")

    model_size = get_model_size(model_info=model_info, precision=precision)

    # Were the model card and license filled?
    try:
        license = model_info.cardData["license"]
    except Exception:
        return styled_error("Please select a license for your model")

    modelcard_OK, error_msg = check_model_card(model)
    if not modelcard_OK:
        return styled_error(error_msg)

    # Check for duplicate submission
    if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
        return styled_warning("This model has been already submitted.")

    # Now, perform the evaluation
    try:
        overall_accuracy, subject_results = evaluate_model_accuracy_by_subject(model, num_questions_per_subject=100)
        if isinstance(overall_accuracy, str) and overall_accuracy.startswith("Error"):
            return styled_error(overall_accuracy)
    except Exception as e:
        return styled_error(f"An error occurred during evaluation: {str(e)}")

    # Prepare results for storage
    results_dict = {
        "config": {
            "model_name": model,
            "base_model": base_model,
            "revision": revision,
            "precision": precision,
            "weight_type": weight_type,
            "model_type": model_type,
            "submitted_time": current_time,
            "license": license,
            "likes": model_info.likes,
            "params": model_size,
            "still_on_hub": True,
        },
        "results": {
            "average": overall_accuracy,
        },
    }

    # Include per-subject accuracies
    for subject, data in subject_results.items():
        accuracy = data['Accuracy']
        results_dict['results'][subject] = accuracy

    # Save results to a JSON file
    results_file_path = f"{EVAL_RESULTS_PATH}/{model.replace('/', '_')}_results.json"
    with open(results_file_path, "w") as f:
        json.dump(results_dict, f, indent=4)

    # Upload the results file
    API.upload_file(
        path_or_fileobj=results_file_path,
        path_in_repo=results_file_path.split(f"{EVAL_RESULTS_PATH}/")[1],
        repo_id=RESULTS_REPO,
        repo_type="dataset",
        commit_message=f"Add results for {model}"
    )

    # Remove the local results file
    os.remove(results_file_path)

    return styled_message("Your model has been evaluated and the results are now on the leaderboard!")