OmPrakashSingh1704 commited on
Commit
9d668ad
·
1 Parent(s): 9bc5731
options/Banner_Model/__pycache__/Image2Image.cpython-310.pyc CHANGED
Binary files a/options/Banner_Model/__pycache__/Image2Image.cpython-310.pyc and b/options/Banner_Model/__pycache__/Image2Image.cpython-310.pyc differ
 
options/Banner_Model/__pycache__/Image2Image_2.cpython-310.pyc CHANGED
Binary files a/options/Banner_Model/__pycache__/Image2Image_2.cpython-310.pyc and b/options/Banner_Model/__pycache__/Image2Image_2.cpython-310.pyc differ
 
options/Banner_Model/__pycache__/Text2Banner.cpython-310.pyc CHANGED
Binary files a/options/Banner_Model/__pycache__/Text2Banner.cpython-310.pyc and b/options/Banner_Model/__pycache__/Text2Banner.cpython-310.pyc differ
 
options/Video_model/Model.py CHANGED
@@ -1,10 +1,10 @@
 
1
  import torch,os,imageio
2
  from diffusers import StableVideoDiffusionPipeline
3
  from diffusers.utils import load_image, export_to_video
4
  from PIL import Image
5
- from huggingface_hub import login
6
  import numpy as np
7
- login(token=os.getenv("TOKEN"))
8
  # Check if CUDA (GPU) is available, otherwise use CPU
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
10
 
@@ -16,6 +16,7 @@ def save_video(frames, save_path, fps, quality=9):
16
  writer.close()
17
 
18
  # Function to generate the video
 
19
  def Video(image):
20
 
21
 
 
1
+ import spaces
2
  import torch,os,imageio
3
  from diffusers import StableVideoDiffusionPipeline
4
  from diffusers.utils import load_image, export_to_video
5
  from PIL import Image
 
6
  import numpy as np
7
+
8
  # Check if CUDA (GPU) is available, otherwise use CPU
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
10
 
 
16
  writer.close()
17
 
18
  # Function to generate the video
19
+ @spaces.GPU(duration=100)
20
  def Video(image):
21
 
22
 
options/Video_model/tdd_svd_scheduler.py DELETED
@@ -1,458 +0,0 @@
1
- from dataclasses import dataclass
2
- from typing import List, Optional, Tuple, Union
3
-
4
- import numpy as np
5
- import torch
6
-
7
- from diffusers.configuration_utils import ConfigMixin, register_to_config
8
- from diffusers.utils import BaseOutput, logging
9
- from diffusers.utils.torch_utils import randn_tensor
10
- from diffusers.schedulers.scheduling_utils import SchedulerMixin
11
-
12
-
13
- logger = logging.get_logger(__name__) # pylint: disable=invalid-name
14
-
15
-
16
- @dataclass
17
- class TDDSVDStochasticIterativeSchedulerOutput(BaseOutput):
18
- """
19
- Output class for the scheduler's `step` function.
20
- Args:
21
- prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
22
- Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
23
- denoising loop.
24
- """
25
-
26
- prev_sample: torch.FloatTensor
27
-
28
-
29
- class TDDSVDStochasticIterativeScheduler(SchedulerMixin, ConfigMixin):
30
- """
31
- Multistep and onestep sampling for consistency models.
32
- This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
33
- methods the library implements for all schedulers such as loading and saving.
34
- Args:
35
- num_train_timesteps (`int`, defaults to 40):
36
- The number of diffusion steps to train the model.
37
- sigma_min (`float`, defaults to 0.002):
38
- Minimum noise magnitude in the sigma schedule. Defaults to 0.002 from the original implementation.
39
- sigma_max (`float`, defaults to 80.0):
40
- Maximum noise magnitude in the sigma schedule. Defaults to 80.0 from the original implementation.
41
- sigma_data (`float`, defaults to 0.5):
42
- The standard deviation of the data distribution from the EDM
43
- [paper](https://huggingface.co/papers/2206.00364). Defaults to 0.5 from the original implementation.
44
- s_noise (`float`, defaults to 1.0):
45
- The amount of additional noise to counteract loss of detail during sampling. A reasonable range is [1.000,
46
- 1.011]. Defaults to 1.0 from the original implementation.
47
- rho (`float`, defaults to 7.0):
48
- The parameter for calculating the Karras sigma schedule from the EDM
49
- [paper](https://huggingface.co/papers/2206.00364). Defaults to 7.0 from the original implementation.
50
- clip_denoised (`bool`, defaults to `True`):
51
- Whether to clip the denoised outputs to `(-1, 1)`.
52
- timesteps (`List` or `np.ndarray` or `torch.Tensor`, *optional*):
53
- An explicit timestep schedule that can be optionally specified. The timesteps are expected to be in
54
- increasing order.
55
- """
56
-
57
- order = 1
58
-
59
- @register_to_config
60
- def __init__(
61
- self,
62
- num_train_timesteps: int = 40,
63
- sigma_min: float = 0.002,
64
- sigma_max: float = 80.0,
65
- sigma_data: float = 0.5,
66
- s_noise: float = 1.0,
67
- rho: float = 7.0,
68
- clip_denoised: bool = True,
69
- eta: float = 0.3,
70
- ):
71
- # standard deviation of the initial noise distribution
72
- self.init_noise_sigma = (sigma_max**2 + 1) ** 0.5
73
- # self.init_noise_sigma = sigma_max
74
-
75
- ramp = np.linspace(0, 1, num_train_timesteps)
76
- sigmas = self._convert_to_karras(ramp)
77
- sigmas = np.concatenate([sigmas, np.array([0])])
78
- timesteps = self.sigma_to_t(sigmas)
79
-
80
- # setable values
81
- self.num_inference_steps = None
82
- self.sigmas = torch.from_numpy(sigmas)
83
- self.timesteps = torch.from_numpy(timesteps)
84
- self.custom_timesteps = False
85
- self.is_scale_input_called = False
86
- self._step_index = None
87
- self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
88
-
89
- self.set_eta(eta)
90
- self.original_timesteps = self.timesteps.clone()
91
- self.original_sigmas = self.sigmas.clone()
92
-
93
-
94
- def index_for_timestep(self, timestep, schedule_timesteps=None):
95
- if schedule_timesteps is None:
96
- schedule_timesteps = self.timesteps
97
-
98
- indices = (schedule_timesteps == timestep).nonzero()
99
- return indices.item()
100
-
101
- @property
102
- def step_index(self):
103
- """
104
- The index counter for current timestep. It will increae 1 after each scheduler step.
105
- """
106
- return self._step_index
107
-
108
- def scale_model_input(
109
- self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor]
110
- ) -> torch.FloatTensor:
111
- """
112
- Scales the consistency model input by `(sigma**2 + sigma_data**2) ** 0.5`.
113
- Args:
114
- sample (`torch.FloatTensor`):
115
- The input sample.
116
- timestep (`float` or `torch.FloatTensor`):
117
- The current timestep in the diffusion chain.
118
- Returns:
119
- `torch.FloatTensor`:
120
- A scaled input sample.
121
- """
122
- # Get sigma corresponding to timestep
123
- if self.step_index is None:
124
- self._init_step_index(timestep)
125
-
126
- sigma = self.sigmas[self.step_index]
127
- sample = sample / ((sigma**2 + self.config.sigma_data**2) ** 0.5)
128
-
129
- self.is_scale_input_called = True
130
- return sample
131
-
132
- # def _sigma_to_t(self, sigma, log_sigmas):
133
- # # get log sigma
134
- # log_sigma = np.log(np.maximum(sigma, 1e-10))
135
-
136
- # # get distribution
137
- # dists = log_sigma - log_sigmas[:, np.newaxis]
138
-
139
- # # get sigmas range
140
- # low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
141
- # high_idx = low_idx + 1
142
-
143
- # low = log_sigmas[low_idx]
144
- # high = log_sigmas[high_idx]
145
-
146
- # # interpolate sigmas
147
- # w = (low - log_sigma) / (low - high)
148
- # w = np.clip(w, 0, 1)
149
-
150
- # # transform interpolation to time range
151
- # t = (1 - w) * low_idx + w * high_idx
152
- # t = t.reshape(sigma.shape)
153
- # return t
154
-
155
- def sigma_to_t(self, sigmas: Union[float, np.ndarray]):
156
- """
157
- Gets scaled timesteps from the Karras sigmas for input to the consistency model.
158
- Args:
159
- sigmas (`float` or `np.ndarray`):
160
- A single Karras sigma or an array of Karras sigmas.
161
- Returns:
162
- `float` or `np.ndarray`:
163
- A scaled input timestep or scaled input timestep array.
164
- """
165
- if not isinstance(sigmas, np.ndarray):
166
- sigmas = np.array(sigmas, dtype=np.float64)
167
-
168
- timesteps = 0.25 * np.log(sigmas + 1e-44)
169
-
170
- return timesteps
171
-
172
- def set_timesteps(
173
- self,
174
- num_inference_steps: Optional[int] = None,
175
- device: Union[str, torch.device] = None,
176
- timesteps: Optional[List[int]] = None,
177
- ):
178
- """
179
- Sets the timesteps used for the diffusion chain (to be run before inference).
180
- Args:
181
- num_inference_steps (`int`):
182
- The number of diffusion steps used when generating samples with a pre-trained model.
183
- device (`str` or `torch.device`, *optional*):
184
- The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
185
- timesteps (`List[int]`, *optional*):
186
- Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
187
- timestep spacing strategy of equal spacing between timesteps is used. If `timesteps` is passed,
188
- `num_inference_steps` must be `None`.
189
- """
190
- if num_inference_steps is None and timesteps is None:
191
- raise ValueError(
192
- "Exactly one of `num_inference_steps` or `timesteps` must be supplied."
193
- )
194
-
195
- if num_inference_steps is not None and timesteps is not None:
196
- raise ValueError(
197
- "Can only pass one of `num_inference_steps` or `timesteps`."
198
- )
199
-
200
- # Follow DDPMScheduler custom timesteps logic
201
- if timesteps is not None:
202
- for i in range(1, len(timesteps)):
203
- if timesteps[i] >= timesteps[i - 1]:
204
- raise ValueError("`timesteps` must be in descending order.")
205
-
206
- if timesteps[0] >= self.config.num_train_timesteps:
207
- raise ValueError(
208
- f"`timesteps` must start before `self.config.train_timesteps`:"
209
- f" {self.config.num_train_timesteps}."
210
- )
211
-
212
- timesteps = np.array(timesteps, dtype=np.int64)
213
- self.custom_timesteps = True
214
- else:
215
- if num_inference_steps > self.config.num_train_timesteps:
216
- raise ValueError(
217
- f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
218
- f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
219
- f" maximal {self.config.num_train_timesteps} timesteps."
220
- )
221
-
222
- self.num_inference_steps = num_inference_steps
223
-
224
- step_ratio = self.config.num_train_timesteps // self.num_inference_steps
225
- timesteps = (np.arange(0, num_inference_steps) * step_ratio).round().copy().astype(np.int64)
226
- self.custom_timesteps = False
227
-
228
- self.original_indices = timesteps
229
- # Map timesteps to Karras sigmas directly for multistep sampling
230
- # See https://github.com/openai/consistency_models/blob/main/cm/karras_diffusion.py#L675
231
- num_train_timesteps = self.config.num_train_timesteps
232
- ramp = timesteps.copy()
233
- ramp = ramp / (num_train_timesteps - 1)
234
- sigmas = self._convert_to_karras(ramp)
235
- timesteps = self.sigma_to_t(sigmas)
236
-
237
- sigmas = np.concatenate([sigmas, [0]]).astype(np.float32)
238
- self.sigmas = torch.from_numpy(sigmas).to(device=device)
239
-
240
- if str(device).startswith("mps"):
241
- # mps does not support float64
242
- self.timesteps = torch.from_numpy(timesteps).to(device, dtype=torch.float32)
243
- else:
244
- self.timesteps = torch.from_numpy(timesteps).to(device=device)
245
-
246
- self._step_index = None
247
- self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
248
-
249
- # Modified _convert_to_karras implementation that takes in ramp as argument
250
- def _convert_to_karras(self, ramp):
251
- """Constructs the noise schedule of Karras et al. (2022)."""
252
-
253
- sigma_min: float = self.config.sigma_min
254
- sigma_max: float = self.config.sigma_max
255
-
256
- rho = self.config.rho
257
- min_inv_rho = sigma_min ** (1 / rho)
258
- max_inv_rho = sigma_max ** (1 / rho)
259
- sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
260
- return sigmas
261
-
262
- def get_scalings(self, sigma):
263
- sigma_data = self.config.sigma_data
264
-
265
- c_skip = sigma_data**2 / (sigma**2 + sigma_data**2)
266
- c_out = -sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
267
- return c_skip, c_out
268
-
269
- def get_scalings_for_boundary_condition(self, sigma):
270
- """
271
- Gets the scalings used in the consistency model parameterization (from Appendix C of the
272
- [paper](https://huggingface.co/papers/2303.01469)) to enforce boundary condition.
273
- <Tip>
274
- `epsilon` in the equations for `c_skip` and `c_out` is set to `sigma_min`.
275
- </Tip>
276
- Args:
277
- sigma (`torch.FloatTensor`):
278
- The current sigma in the Karras sigma schedule.
279
- Returns:
280
- `tuple`:
281
- A two-element tuple where `c_skip` (which weights the current sample) is the first element and `c_out`
282
- (which weights the consistency model output) is the second element.
283
- """
284
- sigma_min = self.config.sigma_min
285
- sigma_data = self.config.sigma_data
286
-
287
- c_skip = sigma_data**2 / ((sigma) ** 2 + sigma_data**2)
288
- c_out = -sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
289
- return c_skip, c_out
290
-
291
- # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index
292
- def _init_step_index(self, timestep):
293
- if isinstance(timestep, torch.Tensor):
294
- timestep = timestep.to(self.timesteps.device)
295
-
296
- index_candidates = (self.timesteps == timestep).nonzero()
297
-
298
- # The sigma index that is taken for the **very** first `step`
299
- # is always the second index (or the last index if there is only 1)
300
- # This way we can ensure we don't accidentally skip a sigma in
301
- # case we start in the middle of the denoising schedule (e.g. for image-to-image)
302
- if len(index_candidates) > 1:
303
- step_index = index_candidates[1]
304
- else:
305
- step_index = index_candidates[0]
306
-
307
- self._step_index = step_index.item()
308
-
309
- def step(
310
- self,
311
- model_output: torch.FloatTensor,
312
- timestep: Union[float, torch.FloatTensor],
313
- sample: torch.FloatTensor,
314
- generator: Optional[torch.Generator] = None,
315
- return_dict: bool = True,
316
- ) -> Union[TDDSVDStochasticIterativeSchedulerOutput, Tuple]:
317
- """
318
- Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
319
- process from the learned model outputs (most often the predicted noise).
320
- Args:
321
- model_output (`torch.FloatTensor`):
322
- The direct output from the learned diffusion model.
323
- timestep (`float`):
324
- The current timestep in the diffusion chain.
325
- sample (`torch.FloatTensor`):
326
- A current instance of a sample created by the diffusion process.
327
- generator (`torch.Generator`, *optional*):
328
- A random number generator.
329
- return_dict (`bool`, *optional*, defaults to `True`):
330
- Whether or not to return a
331
- [`~schedulers.scheduling_consistency_models.TDDSVDStochasticIterativeSchedulerOutput`] or `tuple`.
332
- Returns:
333
- [`~schedulers.scheduling_consistency_models.TDDSVDStochasticIterativeSchedulerOutput`] or `tuple`:
334
- If return_dict is `True`,
335
- [`~schedulers.scheduling_consistency_models.TDDSVDStochasticIterativeSchedulerOutput`] is returned,
336
- otherwise a tuple is returned where the first element is the sample tensor.
337
- """
338
-
339
- if (
340
- isinstance(timestep, int)
341
- or isinstance(timestep, torch.IntTensor)
342
- or isinstance(timestep, torch.LongTensor)
343
- ):
344
- raise ValueError(
345
- (
346
- "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
347
- f" `{self.__class__}.step()` is not supported. Make sure to pass"
348
- " one of the `scheduler.timesteps` as a timestep."
349
- ),
350
- )
351
-
352
- if not self.is_scale_input_called:
353
- logger.warning(
354
- "The `scale_model_input` function should be called before `step` to ensure correct denoising. "
355
- "See `StableDiffusionPipeline` for a usage example."
356
- )
357
-
358
- sigma_min = self.config.sigma_min
359
- sigma_max = self.config.sigma_max
360
-
361
- if self.step_index is None:
362
- self._init_step_index(timestep)
363
-
364
- # sigma_next corresponds to next_t in original implementation
365
- next_step_index = self.step_index + 1
366
-
367
- sigma = self.sigmas[self.step_index]
368
- if next_step_index < len(self.sigmas):
369
- sigma_next = self.sigmas[next_step_index]
370
- else:
371
- # Set sigma_next to sigma_min
372
- sigma_next = self.sigmas[-1]
373
-
374
- # Get scalings for boundary conditions
375
- c_skip, c_out = self.get_scalings_for_boundary_condition(sigma)
376
-
377
- if next_step_index < len(self.original_indices):
378
- next_step_original_index = self.original_indices[next_step_index]
379
- step_s_original_index = int(next_step_original_index + self.eta * (self.config.num_train_timesteps - 1 - next_step_original_index))
380
- sigma_s = self.original_sigmas[step_s_original_index]
381
- else:
382
- sigma_s = self.sigmas[-1]
383
-
384
- # 1. Denoise model output using boundary conditions
385
- denoised = c_out * model_output + c_skip * sample
386
- if self.config.clip_denoised:
387
- denoised = denoised.clamp(-1, 1)
388
-
389
- d = (sample - denoised) / sigma
390
- sample_s = sample + d * (sigma_s - sigma)
391
-
392
- # 2. Sample z ~ N(0, s_noise^2 * I)
393
- # Noise is not used for onestep sampling.
394
- if len(self.timesteps) > 1:
395
- noise = randn_tensor(
396
- model_output.shape,
397
- dtype=model_output.dtype,
398
- device=model_output.device,
399
- generator=generator,
400
- )
401
- else:
402
- noise = torch.zeros_like(model_output)
403
- z = noise * self.config.s_noise
404
-
405
- sigma_hat = sigma_next.clamp(min = 0, max = sigma_max)
406
- # sigma_hat = sigma_next.clamp(min = sigma_min, max = sigma_max)
407
-
408
- # print("denoise currently")
409
- # print(sigma_hat)
410
-
411
- # origin
412
- # prev_sample = denoised + z * sigma_hat
413
- prev_sample = sample_s + z * (sigma_hat - sigma_s)
414
-
415
- # upon completion increase step index by one
416
- self._step_index += 1
417
-
418
- if not return_dict:
419
- return (prev_sample,)
420
-
421
- return TDDSVDStochasticIterativeSchedulerOutput(prev_sample=prev_sample)
422
-
423
- # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
424
- def add_noise(
425
- self,
426
- original_samples: torch.FloatTensor,
427
- noise: torch.FloatTensor,
428
- timesteps: torch.FloatTensor,
429
- ) -> torch.FloatTensor:
430
- # Make sure sigmas and timesteps have the same device and dtype as original_samples
431
- sigmas = self.sigmas.to(
432
- device=original_samples.device, dtype=original_samples.dtype
433
- )
434
- if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
435
- # mps does not support float64
436
- schedule_timesteps = self.timesteps.to(
437
- original_samples.device, dtype=torch.float32
438
- )
439
- timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
440
- else:
441
- schedule_timesteps = self.timesteps.to(original_samples.device)
442
- timesteps = timesteps.to(original_samples.device)
443
-
444
- step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
445
-
446
- sigma = sigmas[step_indices].flatten()
447
- while len(sigma.shape) < len(original_samples.shape):
448
- sigma = sigma.unsqueeze(-1)
449
-
450
- noisy_samples = original_samples + noise * sigma
451
- return noisy_samples
452
-
453
- def __len__(self):
454
- return self.config.num_train_timesteps
455
-
456
- def set_eta(self, eta: float):
457
- assert 0.0 <= eta <= 1.0
458
- self.eta = eta
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
options/Video_model/utils.py DELETED
@@ -1,42 +0,0 @@
1
- import torch
2
- from diffusers.loaders.lora import LoraLoaderMixin
3
- from typing import Dict, Union
4
- import numpy as np
5
- import imageio
6
-
7
- def load_lora_weights(unet, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name = None, **kwargs):
8
- # if a dict is passed, copy it instead of modifying it inplace
9
- if isinstance(pretrained_model_name_or_path_or_dict, dict):
10
- pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()
11
-
12
- # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
13
- state_dict, network_alphas = LoraLoaderMixin.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
14
-
15
- # remove prefix if not removed when saved
16
- state_dict = {name.replace('base_model.model.', ''): param for name, param in state_dict.items()}
17
-
18
- is_correct_format = all("lora" in key or "dora_scale" in key for key in state_dict.keys())
19
- if not is_correct_format:
20
- raise ValueError("Invalid LoRA checkpoint.")
21
-
22
- low_cpu_mem_usage = True
23
-
24
- LoraLoaderMixin.load_lora_into_unet(
25
- state_dict,
26
- network_alphas=network_alphas,
27
- unet = unet,
28
- low_cpu_mem_usage=low_cpu_mem_usage,
29
- adapter_name=adapter_name,
30
- )
31
-
32
-
33
- def save_video(frames, save_path, fps, quality=9):
34
- # Ensure the file is saved with a video format
35
- if not save_path.endswith(('.mp4', '.avi', '.gif')):
36
- save_path += '.mp4' # Default to mp4 if no valid extension is provided
37
-
38
- writer = imageio.get_writer(save_path, fps=fps, quality=quality)
39
- for frame in frames:
40
- frame = np.array(frame)
41
- writer.append_data(frame)
42
- writer.close()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
options/__pycache__/Banner.cpython-310.pyc CHANGED
Binary files a/options/__pycache__/Banner.cpython-310.pyc and b/options/__pycache__/Banner.cpython-310.pyc differ