Spaces:
Runtime error
Runtime error
# import spaces | |
# import torch | |
# from controlnet_aux import LineartDetector | |
# from diffusers import ControlNetModel,UniPCMultistepScheduler,StableDiffusionControlNetPipeline | |
# from PIL import Image | |
# device= "cuda" if torch.cuda.is_available() else "cpu" | |
# print("Using device for I2I_2:", device) | |
# @spaces.GPU(duration=100) | |
# def I2I_2(image, prompt,size,num_inference_steps,guidance_scale): | |
# processor = LineartDetector.from_pretrained("lllyasviel/Annotators") | |
# checkpoint = "ControlNet-1-1-preview/control_v11p_sd15_lineart" | |
# controlnet = ControlNetModel.from_pretrained(checkpoint, torch_dtype=torch.float16).to(device) | |
# pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
# "radames/stable-diffusion-v1-5-img2img", controlnet=controlnet, torch_dtype=torch.float16 | |
# ).to(device) | |
# pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | |
# pipe.enable_model_cpu_offload() | |
# if not isinstance(image, Image.Image): | |
# image = Image.fromarray(image) | |
# image.resize((size,size)) | |
# image=processor(image) | |
# generator = torch.Generator(device=device).manual_seed(0) | |
# image = pipe(prompt+"best quality, extremely detailed", num_inference_steps=num_inference_steps, generator=generator, image=image,negative_prompt="longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",guidance_scale=guidance_scale).images[0] | |
# return image | |
from gradio_client import Client | |
def I2I_2(image, prompt,size,num_inference_steps,guidance_scale): | |
client = Client("https://hysts-controlnet-v1-1.hf.space/") | |
res=client.predict([image,prompt,"best quality, extremely detailed","longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",1,size,size,num_inference_steps,guidance_scale,0,"Lineart","/lineart"]) | |
print(res) | |
return res |