File size: 9,417 Bytes
b8f40f2 63ec9ef b8f40f2 63ec9ef b8f40f2 63ec9ef b8f40f2 63ec9ef b8f40f2 63ec9ef b8f40f2 63ec9ef b8f40f2 63ec9ef b8f40f2 63ec9ef b8f40f2 63ec9ef b8f40f2 63ec9ef b8f40f2 63ec9ef b8f40f2 63ec9ef b8f40f2 63ec9ef b8f40f2 63ec9ef b8f40f2 63ec9ef b8f40f2 63ec9ef b8f40f2 63ec9ef b8f40f2 63ec9ef b8f40f2 63ec9ef b8f40f2 63ec9ef b8f40f2 63ec9ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
import os, sys, re, json
import argparse
import shutil
import warnings
import whisper_timestamped as wt
from pdb import set_trace as b
from pprint import pprint as pp
from profanity_check import predict, predict_prob
from pydub import AudioSegment
from pydub.playback import play
from subprocess import Popen, PIPE
def parse_args():
"""
"""
parser = argparse.ArgumentParser(
description=('Tool to mute profanities in a song (source separation -> speech recognition -> profanity detection -> mask profanities -> re-mix)'),
usage=('see <py main.py --help> or run as local web app with streamlit: <streamlit run main.py>')
)
parser.add_argument(
'-i',
'--input',
default=None,
nargs='?',
#required=True,
help=("path to a mp3")
)
parser.add_argument(
'-m',
'--model',
default='small',
nargs='?',
help=("model used by whisper for speech recognition: tiny, small (default) or medium")
)
parser.add_argument(
'-p',
'--play',
default=False,
action='store_true',
help=("play output audio at the end")
)
parser.add_argument(
'-v',
'--verbose',
default=True,
action='store_true',
help=("print transcribed text and detected profanities to screen")
)
return parser.parse_args()
def main(args, input_file=None, model_size=None, verbose=False, play_output=False, skip_ss=False):
"""
"""
if not input_file:
input_file = args.input
if not model_size:
model_size = args.model
if not verbose:
verbose = args.verbose
if not play_output:
play_output = args.play
# exit if input file not found
if len(sys.argv)>1 and not os.path.isfile(input_file):
print('Error: --input file not found')
raise Exception
print(f'\nProcessing input file: {input_file}')
if not skip_ss:
# split audio into vocals + accompaniment
print('Running source separation')
stems_dir = source_separation(input_file, use_demucs=False, use_spleeter=True)
vocal_stem = os.path.join(stems_dir, 'vocals.wav')
#instr_stem = os.path.join(stems_dir, 'no_vocals.wav') # demucs
instr_stem = os.path.join(stems_dir, 'accompaniment.wav') # spleeter
print(f'Vocal stem written to: {vocal_stem}')
else:
vocal_stem = input_file
instr_stem = None
audio = wt.load_audio(vocal_stem)
model = wt.load_model(model_size, device='cpu')
text = wt.transcribe(model, audio, language='en')
if verbose:
print('\nTranscribed text:')
print(text['text']+'\n')
# checking for profanities in text
print('Run profanity detection on text')
profanities = profanity_detection(text)
if not profanities:
print(f'No profanities found in {input_file} - exiting')
return 'No profanities found', None, None
if verbose:
print('profanities found in text:')
pp(profanities)
# masking
print('Mask profanities in vocal stem')
vocals = mask_profanities(vocal_stem, profanities)
# re-mixing
print('Merge instrumentals stem and masked vocals stem')
if not skip_ss:
mix = AudioSegment.from_wav(instr_stem).overlay(vocals)
else:
mix = vocals
# write mix to file
outpath = input_file.replace('.mp3', '_masked.mp3').replace('.wav', '_masked.wav')
if input_file.endswith('.wav'):
mix.export(outpath, format="wav")
elif input_file.endswith('.mp3'):
mix.export(outpath, format="mp3")
print(f'Mixed file written to: {outpath}')
# play output
if play_output:
print('\nPlaying output...')
play(mix)
return outpath, vocal_stem, instr_stem
def source_separation(inpath, use_demucs=False, use_spleeter=True):
"""
Execute shell command to run demucs and pipe stdout/stderr back to python
"""
infile = os.path.basename(inpath)
if use_demucs:
cmd = f'demucs --two-stems=vocals --jobs 8 "{inpath}"'
#stems_dir = os.path.join(re.findall('/.*', stdout)[0], infile.replace('.mp3','').replace('.wav',''))
elif use_spleeter:
outdir = 'audio/separated'
cmd = f'spleeter separate {inpath} -p spleeter:2stems -o {outdir}'
stems_dir = os.path.join(outdir, os.path.splitext(infile)[0])
stdout, stderr = Popen(cmd, stdout=PIPE, stderr=PIPE, shell=True, executable='/bin/bash').communicate()
stdout = stdout.decode('utf8')
# exit if lib error'd out
if stderr:
stderr = stderr.decode('utf-8').lower()
if 'error' in stderr or 'not exist' in stderr:
print(stderr.decode('utf8').split('\n')[0])
raise Exception
# parse stems directory path from stdout and return it if successful
if not os.path.isdir(stems_dir):
print(f'Error: output stem directory "{stems_dir}" not found')
raise Exception
return stems_dir
def profanity_detection(text):
"""
"""
# detect profanities in text
profs = []
for segment in text['segments']:
for word in segment['words']:
#if word['confidence']<.25:
# print(word)
text = word['text'].replace('.','').replace(',','').lower()
# skip false positives
if text in ['cancer','hell','junk','die','lame','freak','freaky','white','stink','shut','spit','mouth','orders','eat','clouds','ugly','dirty','wet']:
continue
# assume anything returned by whisper with more than 1 * is profanity e.g n***a
if '**' in text:
profs.append(word)
continue
# add true negatives
if text in ['bitchy', 'puss']:
profs.append(word)
continue
# run profanity detection - returns 1 (True) or 0 (False)
if predict([word['text']])[0]:
profs.append(word)
return profs
def mask_profanities(vocal_stem, profanities):
"""
"""
# load vocal stem and mask profanities
vocals = AudioSegment.from_wav(vocal_stem)
for prof in profanities:
mask = vocals[prof['start']*1000:prof['end']*1000] # pydub works in milliseconds
mask -= 50 # reduce lvl by some dB (enough to ~mute it)
#mask = mask.silent(len(mask))
#mask = mask.fade_in(100).fade_out(100) # it prepends/appends fades so end up with longer mask
start = vocals[:prof['start']*1000]
end = vocals[prof['end']*1000:]
#print(f"masking {prof['text']} from {prof['start']} to {prof['end']}")
vocals = start + mask + end
return vocals
if __name__ == "__main__":
args = parse_args()
if len(sys.argv)>1:
main(args, skip_ss=False)
else:
import streamlit as st
st.title('Saylss')
with st.expander("About", expanded=False):
st.markdown('''
This app processes an input audio track (.mp3 or .wav) with the purpose of identifying and muting profanities in the song.
A larger model takes longer to run and is more accurate, and vice-versa.
Simply select the model size and upload your file!
''')
model = st.selectbox('Choose model size:', ('tiny','small','medium'), index=1)
uploaded_file = st.file_uploader(
"Choose input track:",
type=[".mp3",".wav"],
accept_multiple_files=False,
)
if uploaded_file is not None:
uploaded_file.name = uploaded_file.name.replace(' ','_')
ext = os.path.splitext(uploaded_file.name)[1]
if ext == '.wav':
st_format = 'audio/wav'
elif ext == '.mp3':
st_format = 'audio/mp3'
uploaded_file_content = uploaded_file.getvalue()
with open(uploaded_file.name, 'wb') as f:
f.write(uploaded_file_content)
audio_bytes_input = uploaded_file_content
st.audio(audio_bytes_input, format=st_format)
# run code
with st.spinner('Processing input audio...'):
inpath = os.path.abspath(uploaded_file.name)
outpath, vocal_stem, instr_stem = main(args, input_file=inpath, model_size=model)
if outpath == 'No profanities found':
st.text(outpath + ' - Refresh the page and try a different song or model size')
sys.exit()
# display output audio
#st.text('Play output Track:')
st.text('\nOutput:')
audio_file = open(outpath, 'rb')
audio_bytes = audio_file.read()
st.audio(audio_bytes, format=st_format)
# flush all media
if os.path.isfile(inpath):
os.remove(inpath)
if os.path.isfile(outpath):
os.remove(outpath)
if os.path.isfile(vocal_stem):
os.remove(vocal_stem)
if os.path.isfile(instr_stem):
os.remove(instr_stem)
sep_dir = os.path.split(instr_stem)[0]
if os.path.isdir(sep_dir):
os.rmdir(sep_dir) |