Spaces:
Runtime error
Runtime error
from __future__ import annotations | |
from typing import TYPE_CHECKING | |
from demucs.apply import apply_model, demucs_segments | |
from demucs.hdemucs import HDemucs | |
from demucs.model_v2 import auto_load_demucs_model_v2 | |
from demucs.pretrained import get_model as _gm | |
from demucs.utils import apply_model_v1 | |
from demucs.utils import apply_model_v2 | |
from lib_v5.tfc_tdf_v3 import TFC_TDF_net, STFT | |
from lib_v5 import spec_utils | |
from lib_v5.vr_network import nets | |
from lib_v5.vr_network import nets_new | |
from lib_v5.vr_network.model_param_init import ModelParameters | |
from pathlib import Path | |
from gui_data.constants import * | |
from gui_data.error_handling import * | |
from scipy import signal | |
import audioread | |
import gzip | |
import librosa | |
import math | |
import numpy as np | |
import onnxruntime as ort | |
import os | |
import torch | |
import warnings | |
import pydub | |
import soundfile as sf | |
import lib_v5.mdxnet as MdxnetSet | |
import math | |
#import random | |
from onnx import load | |
from onnx2pytorch import ConvertModel | |
import gc | |
if TYPE_CHECKING: | |
from UVR import ModelData | |
# if not is_macos: | |
# import torch_directml | |
mps_available = torch.backends.mps.is_available() if is_macos else False | |
cuda_available = torch.cuda.is_available() | |
# def get_gpu_info(): | |
# directml_device, directml_available = DIRECTML_DEVICE, False | |
# if not is_macos: | |
# directml_available = torch_directml.is_available() | |
# if directml_available: | |
# directml_device = str(torch_directml.device()).partition(":")[0] | |
# return directml_device, directml_available | |
# DIRECTML_DEVICE, directml_available = get_gpu_info() | |
def clear_gpu_cache(): | |
gc.collect() | |
if is_macos: | |
torch.mps.empty_cache() | |
else: | |
torch.cuda.empty_cache() | |
warnings.filterwarnings("ignore") | |
cpu = torch.device('cpu') | |
class SeperateAttributes: | |
def __init__(self, model_data: ModelData, | |
process_data: dict, | |
main_model_primary_stem_4_stem=None, | |
main_process_method=None, | |
is_return_dual=True, | |
main_model_primary=None, | |
vocal_stem_path=None, | |
master_inst_source=None, | |
master_vocal_source=None): | |
self.list_all_models: list | |
self.process_data = process_data | |
self.progress_value = 0 | |
self.set_progress_bar = process_data['set_progress_bar'] | |
self.write_to_console = process_data['write_to_console'] | |
if vocal_stem_path: | |
self.audio_file, self.audio_file_base = vocal_stem_path | |
self.audio_file_base_voc_split = lambda stem, split:os.path.join(self.export_path, f'{self.audio_file_base.replace("_(Vocals)", "")}_({stem}_{split}).wav') | |
else: | |
self.audio_file = process_data['audio_file'] | |
self.audio_file_base = process_data['audio_file_base'] | |
self.audio_file_base_voc_split = None | |
self.export_path = process_data['export_path'] | |
self.cached_source_callback = process_data['cached_source_callback'] | |
self.cached_model_source_holder = process_data['cached_model_source_holder'] | |
self.is_4_stem_ensemble = process_data['is_4_stem_ensemble'] | |
self.list_all_models = process_data['list_all_models'] | |
self.process_iteration = process_data['process_iteration'] | |
self.is_return_dual = is_return_dual | |
self.is_pitch_change = model_data.is_pitch_change | |
self.semitone_shift = model_data.semitone_shift | |
self.is_match_frequency_pitch = model_data.is_match_frequency_pitch | |
self.overlap = model_data.overlap | |
self.overlap_mdx = model_data.overlap_mdx | |
self.overlap_mdx23 = model_data.overlap_mdx23 | |
self.is_mdx_combine_stems = model_data.is_mdx_combine_stems | |
self.is_mdx_c = model_data.is_mdx_c | |
self.mdx_c_configs = model_data.mdx_c_configs | |
self.mdxnet_stem_select = model_data.mdxnet_stem_select | |
self.mixer_path = model_data.mixer_path | |
self.model_samplerate = model_data.model_samplerate | |
self.model_capacity = model_data.model_capacity | |
self.is_vr_51_model = model_data.is_vr_51_model | |
self.is_pre_proc_model = model_data.is_pre_proc_model | |
self.is_secondary_model_activated = model_data.is_secondary_model_activated if not self.is_pre_proc_model else False | |
self.is_secondary_model = model_data.is_secondary_model if not self.is_pre_proc_model else True | |
self.process_method = model_data.process_method | |
self.model_path = model_data.model_path | |
self.model_name = model_data.model_name | |
self.model_basename = model_data.model_basename | |
self.wav_type_set = model_data.wav_type_set | |
self.mp3_bit_set = model_data.mp3_bit_set | |
self.save_format = model_data.save_format | |
self.is_gpu_conversion = model_data.is_gpu_conversion | |
self.is_normalization = model_data.is_normalization | |
self.is_primary_stem_only = model_data.is_primary_stem_only if not self.is_secondary_model else model_data.is_primary_model_primary_stem_only | |
self.is_secondary_stem_only = model_data.is_secondary_stem_only if not self.is_secondary_model else model_data.is_primary_model_secondary_stem_only | |
self.is_ensemble_mode = model_data.is_ensemble_mode | |
self.secondary_model = model_data.secondary_model # | |
self.primary_model_primary_stem = model_data.primary_model_primary_stem | |
self.primary_stem_native = model_data.primary_stem_native | |
self.primary_stem = model_data.primary_stem # | |
self.secondary_stem = model_data.secondary_stem # | |
self.is_invert_spec = model_data.is_invert_spec # | |
self.is_deverb_vocals = model_data.is_deverb_vocals | |
self.is_mixer_mode = model_data.is_mixer_mode # | |
self.secondary_model_scale = model_data.secondary_model_scale # | |
self.is_demucs_pre_proc_model_inst_mix = model_data.is_demucs_pre_proc_model_inst_mix # | |
self.primary_source_map = {} | |
self.secondary_source_map = {} | |
self.primary_source = None | |
self.secondary_source = None | |
self.secondary_source_primary = None | |
self.secondary_source_secondary = None | |
self.main_model_primary_stem_4_stem = main_model_primary_stem_4_stem | |
self.main_model_primary = main_model_primary | |
self.ensemble_primary_stem = model_data.ensemble_primary_stem | |
self.is_multi_stem_ensemble = model_data.is_multi_stem_ensemble | |
self.is_other_gpu = False | |
self.is_deverb = True | |
self.DENOISER_MODEL = model_data.DENOISER_MODEL | |
self.DEVERBER_MODEL = model_data.DEVERBER_MODEL | |
self.is_source_swap = False | |
self.vocal_split_model = model_data.vocal_split_model | |
self.is_vocal_split_model = model_data.is_vocal_split_model | |
self.master_vocal_path = None | |
self.set_master_inst_source = None | |
self.master_inst_source = master_inst_source | |
self.master_vocal_source = master_vocal_source | |
self.is_save_inst_vocal_splitter = isinstance(master_inst_source, np.ndarray) and model_data.is_save_inst_vocal_splitter | |
self.is_inst_only_voc_splitter = model_data.is_inst_only_voc_splitter | |
self.is_karaoke = model_data.is_karaoke | |
self.is_bv_model = model_data.is_bv_model | |
self.is_bv_model_rebalenced = model_data.bv_model_rebalance and self.is_vocal_split_model | |
self.is_sec_bv_rebalance = model_data.is_sec_bv_rebalance | |
self.stem_path_init = os.path.join(self.export_path, f'{self.audio_file_base}_({self.secondary_stem}).wav') | |
self.deverb_vocal_opt = model_data.deverb_vocal_opt | |
self.is_save_vocal_only = model_data.is_save_vocal_only | |
self.device = cpu | |
self.run_type = ['CPUExecutionProvider'] | |
self.is_opencl = False | |
self.device_set = model_data.device_set | |
self.is_use_opencl = model_data.is_use_opencl | |
if self.is_inst_only_voc_splitter or self.is_sec_bv_rebalance: | |
self.is_primary_stem_only = False | |
self.is_secondary_stem_only = False | |
if main_model_primary and self.is_multi_stem_ensemble: | |
self.primary_stem, self.secondary_stem = main_model_primary, secondary_stem(main_model_primary) | |
if self.is_gpu_conversion >= 0: | |
if mps_available: | |
self.device, self.is_other_gpu = 'mps', True | |
else: | |
device_prefix = None | |
if self.device_set != DEFAULT: | |
device_prefix = CUDA_DEVICE#DIRECTML_DEVICE if self.is_use_opencl and directml_available else CUDA_DEVICE | |
# if directml_available and self.is_use_opencl: | |
# self.device = torch_directml.device() if not device_prefix else f'{device_prefix}:{self.device_set}' | |
# self.is_other_gpu = True | |
if cuda_available:# and not self.is_use_opencl: | |
self.device = CUDA_DEVICE if not device_prefix else f'{device_prefix}:{self.device_set}' | |
self.run_type = ['CUDAExecutionProvider'] | |
if model_data.process_method == MDX_ARCH_TYPE: | |
self.is_mdx_ckpt = model_data.is_mdx_ckpt | |
self.primary_model_name, self.primary_sources = self.cached_source_callback(MDX_ARCH_TYPE, model_name=self.model_basename) | |
self.is_denoise = model_data.is_denoise# | |
self.is_denoise_model = model_data.is_denoise_model# | |
self.is_mdx_c_seg_def = model_data.is_mdx_c_seg_def# | |
self.mdx_batch_size = model_data.mdx_batch_size | |
self.compensate = model_data.compensate | |
self.mdx_segment_size = model_data.mdx_segment_size | |
if self.is_mdx_c: | |
if not self.is_4_stem_ensemble: | |
self.primary_stem = model_data.ensemble_primary_stem if process_data['is_ensemble_master'] else model_data.primary_stem | |
self.secondary_stem = model_data.ensemble_secondary_stem if process_data['is_ensemble_master'] else model_data.secondary_stem | |
else: | |
self.dim_f, self.dim_t = model_data.mdx_dim_f_set, 2**model_data.mdx_dim_t_set | |
self.check_label_secondary_stem_runs() | |
self.n_fft = model_data.mdx_n_fft_scale_set | |
self.chunks = model_data.chunks | |
self.margin = model_data.margin | |
self.adjust = 1 | |
self.dim_c = 4 | |
self.hop = 1024 | |
if model_data.process_method == DEMUCS_ARCH_TYPE: | |
self.demucs_stems = model_data.demucs_stems if not main_process_method in [MDX_ARCH_TYPE, VR_ARCH_TYPE] else None | |
self.secondary_model_4_stem = model_data.secondary_model_4_stem | |
self.secondary_model_4_stem_scale = model_data.secondary_model_4_stem_scale | |
self.is_chunk_demucs = model_data.is_chunk_demucs | |
self.segment = model_data.segment | |
self.demucs_version = model_data.demucs_version | |
self.demucs_source_list = model_data.demucs_source_list | |
self.demucs_source_map = model_data.demucs_source_map | |
self.is_demucs_combine_stems = model_data.is_demucs_combine_stems | |
self.demucs_stem_count = model_data.demucs_stem_count | |
self.pre_proc_model = model_data.pre_proc_model | |
self.device = cpu if self.is_other_gpu and not self.demucs_version in [DEMUCS_V3, DEMUCS_V4] else self.device | |
self.primary_stem = model_data.ensemble_primary_stem if process_data['is_ensemble_master'] else model_data.primary_stem | |
self.secondary_stem = model_data.ensemble_secondary_stem if process_data['is_ensemble_master'] else model_data.secondary_stem | |
if (self.is_multi_stem_ensemble or self.is_4_stem_ensemble) and not self.is_secondary_model: | |
self.is_return_dual = False | |
if self.is_multi_stem_ensemble and main_model_primary: | |
self.is_4_stem_ensemble = False | |
if main_model_primary in self.demucs_source_map.keys(): | |
self.primary_stem = main_model_primary | |
self.secondary_stem = secondary_stem(main_model_primary) | |
elif secondary_stem(main_model_primary) in self.demucs_source_map.keys(): | |
self.primary_stem = secondary_stem(main_model_primary) | |
self.secondary_stem = main_model_primary | |
if self.is_secondary_model and not process_data['is_ensemble_master']: | |
if not self.demucs_stem_count == 2 and model_data.primary_model_primary_stem == INST_STEM: | |
self.primary_stem = VOCAL_STEM | |
self.secondary_stem = INST_STEM | |
else: | |
self.primary_stem = model_data.primary_model_primary_stem | |
self.secondary_stem = secondary_stem(self.primary_stem) | |
self.shifts = model_data.shifts | |
self.is_split_mode = model_data.is_split_mode if not self.demucs_version == DEMUCS_V4 else True | |
self.primary_model_name, self.primary_sources = self.cached_source_callback(DEMUCS_ARCH_TYPE, model_name=self.model_basename) | |
if model_data.process_method == VR_ARCH_TYPE: | |
self.check_label_secondary_stem_runs() | |
self.primary_model_name, self.primary_sources = self.cached_source_callback(VR_ARCH_TYPE, model_name=self.model_basename) | |
self.mp = model_data.vr_model_param | |
self.high_end_process = model_data.is_high_end_process | |
self.is_tta = model_data.is_tta | |
self.is_post_process = model_data.is_post_process | |
self.is_gpu_conversion = model_data.is_gpu_conversion | |
self.batch_size = model_data.batch_size | |
self.window_size = model_data.window_size | |
self.input_high_end_h = None | |
self.input_high_end = None | |
self.post_process_threshold = model_data.post_process_threshold | |
self.aggressiveness = {'value': model_data.aggression_setting, | |
'split_bin': self.mp.param['band'][1]['crop_stop'], | |
'aggr_correction': self.mp.param.get('aggr_correction')} | |
def check_label_secondary_stem_runs(self): | |
# For ensemble master that's not a 4-stem ensemble, and not mdx_c | |
if self.process_data['is_ensemble_master'] and not self.is_4_stem_ensemble and not self.is_mdx_c: | |
if self.ensemble_primary_stem != self.primary_stem: | |
self.is_primary_stem_only, self.is_secondary_stem_only = self.is_secondary_stem_only, self.is_primary_stem_only | |
# For secondary models | |
if self.is_pre_proc_model or self.is_secondary_model: | |
self.is_primary_stem_only = False | |
self.is_secondary_stem_only = False | |
def start_inference_console_write(self): | |
if self.is_secondary_model and not self.is_pre_proc_model and not self.is_vocal_split_model: | |
self.write_to_console(INFERENCE_STEP_2_SEC(self.process_method, self.model_basename)) | |
if self.is_pre_proc_model: | |
self.write_to_console(INFERENCE_STEP_2_PRE(self.process_method, self.model_basename)) | |
if self.is_vocal_split_model: | |
self.write_to_console(INFERENCE_STEP_2_VOC_S(self.process_method, self.model_basename)) | |
def running_inference_console_write(self, is_no_write=False): | |
self.write_to_console(DONE, base_text='') if not is_no_write else None | |
self.set_progress_bar(0.05) if not is_no_write else None | |
if self.is_secondary_model and not self.is_pre_proc_model and not self.is_vocal_split_model: | |
self.write_to_console(INFERENCE_STEP_1_SEC) | |
elif self.is_pre_proc_model: | |
self.write_to_console(INFERENCE_STEP_1_PRE) | |
elif self.is_vocal_split_model: | |
self.write_to_console(INFERENCE_STEP_1_VOC_S) | |
else: | |
self.write_to_console(INFERENCE_STEP_1) | |
def running_inference_progress_bar(self, length, is_match_mix=False): | |
if not is_match_mix: | |
self.progress_value += 1 | |
if (0.8/length*self.progress_value) >= 0.8: | |
length = self.progress_value + 1 | |
self.set_progress_bar(0.1, (0.8/length*self.progress_value)) | |
def load_cached_sources(self): | |
if self.is_secondary_model and not self.is_pre_proc_model: | |
self.write_to_console(INFERENCE_STEP_2_SEC_CACHED_MODOEL(self.process_method, self.model_basename)) | |
elif self.is_pre_proc_model: | |
self.write_to_console(INFERENCE_STEP_2_PRE_CACHED_MODOEL(self.process_method, self.model_basename)) | |
else: | |
self.write_to_console(INFERENCE_STEP_2_PRIMARY_CACHED, "") | |
def cache_source(self, secondary_sources): | |
model_occurrences = self.list_all_models.count(self.model_basename) | |
if not model_occurrences <= 1: | |
if self.process_method == MDX_ARCH_TYPE: | |
self.cached_model_source_holder(MDX_ARCH_TYPE, secondary_sources, self.model_basename) | |
if self.process_method == VR_ARCH_TYPE: | |
self.cached_model_source_holder(VR_ARCH_TYPE, secondary_sources, self.model_basename) | |
if self.process_method == DEMUCS_ARCH_TYPE: | |
self.cached_model_source_holder(DEMUCS_ARCH_TYPE, secondary_sources, self.model_basename) | |
def process_vocal_split_chain(self, sources: dict): | |
def is_valid_vocal_split_condition(master_vocal_source): | |
"""Checks if conditions for vocal split processing are met.""" | |
conditions = [ | |
isinstance(master_vocal_source, np.ndarray), | |
self.vocal_split_model, | |
not self.is_ensemble_mode, | |
not self.is_karaoke, | |
not self.is_bv_model | |
] | |
return all(conditions) | |
# Retrieve sources from the dictionary with default fallbacks | |
master_inst_source = sources.get(INST_STEM, None) | |
master_vocal_source = sources.get(VOCAL_STEM, None) | |
# Process the vocal split chain if conditions are met | |
if is_valid_vocal_split_condition(master_vocal_source): | |
process_chain_model( | |
self.vocal_split_model, | |
self.process_data, | |
vocal_stem_path=self.master_vocal_path, | |
master_vocal_source=master_vocal_source, | |
master_inst_source=master_inst_source | |
) | |
def process_secondary_stem(self, stem_source, secondary_model_source=None, model_scale=None): | |
if not self.is_secondary_model: | |
if self.is_secondary_model_activated and isinstance(secondary_model_source, np.ndarray): | |
secondary_model_scale = model_scale if model_scale else self.secondary_model_scale | |
stem_source = spec_utils.average_dual_sources(stem_source, secondary_model_source, secondary_model_scale) | |
return stem_source | |
def final_process(self, stem_path, source, secondary_source, stem_name, samplerate): | |
source = self.process_secondary_stem(source, secondary_source) | |
self.write_audio(stem_path, source, samplerate, stem_name=stem_name) | |
return {stem_name: source} | |
def write_audio(self, stem_path: str, stem_source, samplerate, stem_name=None): | |
def save_audio_file(path, source): | |
source = spec_utils.normalize(source, self.is_normalization) | |
sf.write(path, source, samplerate, subtype=self.wav_type_set) | |
if is_not_ensemble: | |
save_format(path, self.save_format, self.mp3_bit_set) | |
def save_voc_split_instrumental(stem_name, stem_source, is_inst_invert=False): | |
inst_stem_name = "Instrumental (With Lead Vocals)" if stem_name == LEAD_VOCAL_STEM else "Instrumental (With Backing Vocals)" | |
inst_stem_path_name = LEAD_VOCAL_STEM_I if stem_name == LEAD_VOCAL_STEM else BV_VOCAL_STEM_I | |
inst_stem_path = self.audio_file_base_voc_split(INST_STEM, inst_stem_path_name) | |
stem_source = -stem_source if is_inst_invert else stem_source | |
inst_stem_source = spec_utils.combine_arrarys([self.master_inst_source, stem_source], is_swap=True) | |
save_with_message(inst_stem_path, inst_stem_name, inst_stem_source) | |
def save_voc_split_vocal(stem_name, stem_source): | |
voc_split_stem_name = LEAD_VOCAL_STEM_LABEL if stem_name == LEAD_VOCAL_STEM else BV_VOCAL_STEM_LABEL | |
voc_split_stem_path = self.audio_file_base_voc_split(VOCAL_STEM, stem_name) | |
save_with_message(voc_split_stem_path, voc_split_stem_name, stem_source) | |
def save_with_message(stem_path, stem_name, stem_source): | |
is_deverb = self.is_deverb_vocals and ( | |
self.deverb_vocal_opt == stem_name or | |
(self.deverb_vocal_opt == 'ALL' and | |
(stem_name == VOCAL_STEM or stem_name == LEAD_VOCAL_STEM_LABEL or stem_name == BV_VOCAL_STEM_LABEL))) | |
self.write_to_console(f'{SAVING_STEM[0]}{stem_name}{SAVING_STEM[1]}') | |
if is_deverb and is_not_ensemble: | |
deverb_vocals(stem_path, stem_source) | |
save_audio_file(stem_path, stem_source) | |
self.write_to_console(DONE, base_text='') | |
def deverb_vocals(stem_path:str, stem_source): | |
self.write_to_console(INFERENCE_STEP_DEVERBING, base_text='') | |
stem_source_deverbed, stem_source_2 = vr_denoiser(stem_source, self.device, is_deverber=True, model_path=self.DEVERBER_MODEL) | |
save_audio_file(stem_path.replace(".wav", "_deverbed.wav"), stem_source_deverbed) | |
save_audio_file(stem_path.replace(".wav", "_reverb_only.wav"), stem_source_2) | |
is_bv_model_lead = (self.is_bv_model_rebalenced and self.is_vocal_split_model and stem_name == LEAD_VOCAL_STEM) | |
is_bv_rebalance_lead = (self.is_bv_model_rebalenced and self.is_vocal_split_model and stem_name == BV_VOCAL_STEM) | |
is_no_vocal_save = self.is_inst_only_voc_splitter and (stem_name == VOCAL_STEM or stem_name == BV_VOCAL_STEM or stem_name == LEAD_VOCAL_STEM) or is_bv_model_lead | |
is_not_ensemble = (not self.is_ensemble_mode or self.is_vocal_split_model) | |
is_do_not_save_inst = (self.is_save_vocal_only and self.is_sec_bv_rebalance and stem_name == INST_STEM) | |
if is_bv_rebalance_lead: | |
master_voc_source = spec_utils.match_array_shapes(self.master_vocal_source, stem_source, is_swap=True) | |
bv_rebalance_lead_source = stem_source-master_voc_source | |
if not is_bv_model_lead and not is_do_not_save_inst: | |
if self.is_vocal_split_model or not self.is_secondary_model: | |
if self.is_vocal_split_model and not self.is_inst_only_voc_splitter: | |
save_voc_split_vocal(stem_name, stem_source) | |
if is_bv_rebalance_lead: | |
save_voc_split_vocal(LEAD_VOCAL_STEM, bv_rebalance_lead_source) | |
else: | |
if not is_no_vocal_save: | |
save_with_message(stem_path, stem_name, stem_source) | |
if self.is_save_inst_vocal_splitter and not self.is_save_vocal_only: | |
save_voc_split_instrumental(stem_name, stem_source) | |
if is_bv_rebalance_lead: | |
save_voc_split_instrumental(LEAD_VOCAL_STEM, bv_rebalance_lead_source, is_inst_invert=True) | |
self.set_progress_bar(0.95) | |
if stem_name == VOCAL_STEM: | |
self.master_vocal_path = stem_path | |
def pitch_fix(self, source, sr_pitched, org_mix): | |
semitone_shift = self.semitone_shift | |
source = spec_utils.change_pitch_semitones(source, sr_pitched, semitone_shift=semitone_shift)[0] | |
source = spec_utils.match_array_shapes(source, org_mix) | |
return source | |
def match_frequency_pitch(self, mix): | |
source = mix | |
if self.is_match_frequency_pitch and self.is_pitch_change: | |
source, sr_pitched = spec_utils.change_pitch_semitones(mix, 44100, semitone_shift=-self.semitone_shift) | |
source = self.pitch_fix(source, sr_pitched, mix) | |
return source | |
class SeperateMDX(SeperateAttributes): | |
def seperate(self): | |
samplerate = 44100 | |
if self.primary_model_name == self.model_basename and isinstance(self.primary_sources, tuple): | |
mix, source = self.primary_sources | |
self.load_cached_sources() | |
else: | |
self.start_inference_console_write() | |
if self.is_mdx_ckpt: | |
model_params = torch.load(self.model_path, map_location=lambda storage, loc: storage)['hyper_parameters'] | |
self.dim_c, self.hop = model_params['dim_c'], model_params['hop_length'] | |
separator = MdxnetSet.ConvTDFNet(**model_params) | |
self.model_run = separator.load_from_checkpoint(self.model_path).to(self.device).eval() | |
else: | |
if self.mdx_segment_size == self.dim_t and not self.is_other_gpu: | |
ort_ = ort.InferenceSession(self.model_path, providers=self.run_type) | |
self.model_run = lambda spek:ort_.run(None, {'input': spek.cpu().numpy()})[0] | |
else: | |
self.model_run = ConvertModel(load(self.model_path)) | |
self.model_run.to(self.device).eval() | |
self.running_inference_console_write() | |
mix = prepare_mix(self.audio_file) | |
source = self.demix(mix) | |
if not self.is_vocal_split_model: | |
self.cache_source((mix, source)) | |
self.write_to_console(DONE, base_text='') | |
mdx_net_cut = True if self.primary_stem in MDX_NET_FREQ_CUT and self.is_match_frequency_pitch else False | |
if self.is_secondary_model_activated and self.secondary_model: | |
self.secondary_source_primary, self.secondary_source_secondary = process_secondary_model(self.secondary_model, self.process_data, main_process_method=self.process_method, main_model_primary=self.primary_stem) | |
if not self.is_primary_stem_only: | |
secondary_stem_path = os.path.join(self.export_path, f'{self.audio_file_base}_({self.secondary_stem}).wav') | |
if not isinstance(self.secondary_source, np.ndarray): | |
raw_mix = self.demix(self.match_frequency_pitch(mix), is_match_mix=True) if mdx_net_cut else self.match_frequency_pitch(mix) | |
self.secondary_source = spec_utils.invert_stem(raw_mix, source) if self.is_invert_spec else mix.T-source.T | |
self.secondary_source_map = self.final_process(secondary_stem_path, self.secondary_source, self.secondary_source_secondary, self.secondary_stem, samplerate) | |
if not self.is_secondary_stem_only: | |
primary_stem_path = os.path.join(self.export_path, f'{self.audio_file_base}_({self.primary_stem}).wav') | |
if not isinstance(self.primary_source, np.ndarray): | |
self.primary_source = source.T | |
self.primary_source_map = self.final_process(primary_stem_path, self.primary_source, self.secondary_source_primary, self.primary_stem, samplerate) | |
clear_gpu_cache() | |
secondary_sources = {**self.primary_source_map, **self.secondary_source_map} | |
self.process_vocal_split_chain(secondary_sources) | |
if self.is_secondary_model or self.is_pre_proc_model: | |
return secondary_sources | |
def initialize_model_settings(self): | |
self.n_bins = self.n_fft//2+1 | |
self.trim = self.n_fft//2 | |
self.chunk_size = self.hop * (self.mdx_segment_size-1) | |
self.gen_size = self.chunk_size-2*self.trim | |
self.stft = STFT(self.n_fft, self.hop, self.dim_f, self.device) | |
def demix(self, mix, is_match_mix=False): | |
self.initialize_model_settings() | |
org_mix = mix | |
tar_waves_ = [] | |
if is_match_mix: | |
chunk_size = self.hop * (256-1) | |
overlap = 0.02 | |
else: | |
chunk_size = self.chunk_size | |
overlap = self.overlap_mdx | |
if self.is_pitch_change: | |
mix, sr_pitched = spec_utils.change_pitch_semitones(mix, 44100, semitone_shift=-self.semitone_shift) | |
gen_size = chunk_size-2*self.trim | |
pad = gen_size + self.trim - ((mix.shape[-1]) % gen_size) | |
mixture = np.concatenate((np.zeros((2, self.trim), dtype='float32'), mix, np.zeros((2, pad), dtype='float32')), 1) | |
step = self.chunk_size - self.n_fft if overlap == DEFAULT else int((1 - overlap) * chunk_size) | |
result = np.zeros((1, 2, mixture.shape[-1]), dtype=np.float32) | |
divider = np.zeros((1, 2, mixture.shape[-1]), dtype=np.float32) | |
total = 0 | |
total_chunks = (mixture.shape[-1] + step - 1) // step | |
for i in range(0, mixture.shape[-1], step): | |
total += 1 | |
start = i | |
end = min(i + chunk_size, mixture.shape[-1]) | |
chunk_size_actual = end - start | |
if overlap == 0: | |
window = None | |
else: | |
window = np.hanning(chunk_size_actual) | |
window = np.tile(window[None, None, :], (1, 2, 1)) | |
mix_part_ = mixture[:, start:end] | |
if end != i + chunk_size: | |
pad_size = (i + chunk_size) - end | |
mix_part_ = np.concatenate((mix_part_, np.zeros((2, pad_size), dtype='float32')), axis=-1) | |
mix_part = torch.tensor([mix_part_], dtype=torch.float32).to(self.device) | |
mix_waves = mix_part.split(self.mdx_batch_size) | |
with torch.no_grad(): | |
for mix_wave in mix_waves: | |
self.running_inference_progress_bar(total_chunks, is_match_mix=is_match_mix) | |
tar_waves = self.run_model(mix_wave, is_match_mix=is_match_mix) | |
if window is not None: | |
tar_waves[..., :chunk_size_actual] *= window | |
divider[..., start:end] += window | |
else: | |
divider[..., start:end] += 1 | |
result[..., start:end] += tar_waves[..., :end-start] | |
tar_waves = result / divider | |
tar_waves_.append(tar_waves) | |
tar_waves_ = np.vstack(tar_waves_)[:, :, self.trim:-self.trim] | |
tar_waves = np.concatenate(tar_waves_, axis=-1)[:, :mix.shape[-1]] | |
source = tar_waves[:,0:None] | |
if self.is_pitch_change and not is_match_mix: | |
source = self.pitch_fix(source, sr_pitched, org_mix) | |
source = source if is_match_mix else source*self.compensate | |
if self.is_denoise_model and not is_match_mix: | |
if NO_STEM in self.primary_stem_native or self.primary_stem_native == INST_STEM: | |
if org_mix.shape[1] != source.shape[1]: | |
source = spec_utils.match_array_shapes(source, org_mix) | |
source = org_mix - vr_denoiser(org_mix-source, self.device, model_path=self.DENOISER_MODEL) | |
else: | |
source = vr_denoiser(source, self.device, model_path=self.DENOISER_MODEL) | |
return source | |
def run_model(self, mix, is_match_mix=False): | |
spek = self.stft(mix.to(self.device))*self.adjust | |
spek[:, :, :3, :] *= 0 | |
if is_match_mix: | |
spec_pred = spek.cpu().numpy() | |
else: | |
spec_pred = -self.model_run(-spek)*0.5+self.model_run(spek)*0.5 if self.is_denoise else self.model_run(spek) | |
return self.stft.inverse(torch.tensor(spec_pred).to(self.device)).cpu().detach().numpy() | |
class SeperateMDXC(SeperateAttributes): | |
def seperate(self): | |
samplerate = 44100 | |
sources = None | |
if self.primary_model_name == self.model_basename and isinstance(self.primary_sources, tuple): | |
mix, sources = self.primary_sources | |
self.load_cached_sources() | |
else: | |
self.start_inference_console_write() | |
self.running_inference_console_write() | |
mix = prepare_mix(self.audio_file) | |
sources = self.demix(mix) | |
if not self.is_vocal_split_model: | |
self.cache_source((mix, sources)) | |
self.write_to_console(DONE, base_text='') | |
stem_list = [self.mdx_c_configs.training.target_instrument] if self.mdx_c_configs.training.target_instrument else [i for i in self.mdx_c_configs.training.instruments] | |
if self.is_secondary_model: | |
if self.is_pre_proc_model: | |
self.mdxnet_stem_select = stem_list[0] | |
else: | |
self.mdxnet_stem_select = self.main_model_primary_stem_4_stem if self.main_model_primary_stem_4_stem else self.primary_model_primary_stem | |
self.primary_stem = self.mdxnet_stem_select | |
self.secondary_stem = secondary_stem(self.mdxnet_stem_select) | |
self.is_primary_stem_only, self.is_secondary_stem_only = False, False | |
is_all_stems = self.mdxnet_stem_select == ALL_STEMS | |
is_not_ensemble_master = not self.process_data['is_ensemble_master'] | |
is_not_single_stem = not len(stem_list) <= 2 | |
is_not_secondary_model = not self.is_secondary_model | |
is_ensemble_4_stem = self.is_4_stem_ensemble and is_not_single_stem | |
if (is_all_stems and is_not_ensemble_master and is_not_single_stem and is_not_secondary_model) or is_ensemble_4_stem and not self.is_pre_proc_model: | |
for stem in stem_list: | |
primary_stem_path = os.path.join(self.export_path, f'{self.audio_file_base}_({stem}).wav') | |
self.primary_source = sources[stem].T | |
self.write_audio(primary_stem_path, self.primary_source, samplerate, stem_name=stem) | |
if stem == VOCAL_STEM and not self.is_sec_bv_rebalance: | |
self.process_vocal_split_chain({VOCAL_STEM:stem}) | |
else: | |
if len(stem_list) == 1: | |
source_primary = sources | |
else: | |
source_primary = sources[stem_list[0]] if self.is_multi_stem_ensemble and len(stem_list) == 2 else sources[self.mdxnet_stem_select] | |
if self.is_secondary_model_activated and self.secondary_model: | |
self.secondary_source_primary, self.secondary_source_secondary = process_secondary_model(self.secondary_model, | |
self.process_data, | |
main_process_method=self.process_method, | |
main_model_primary=self.primary_stem) | |
if not self.is_primary_stem_only: | |
secondary_stem_path = os.path.join(self.export_path, f'{self.audio_file_base}_({self.secondary_stem}).wav') | |
if not isinstance(self.secondary_source, np.ndarray): | |
if self.is_mdx_combine_stems and len(stem_list) >= 2: | |
if len(stem_list) == 2: | |
secondary_source = sources[self.secondary_stem] | |
else: | |
sources.pop(self.primary_stem) | |
next_stem = next(iter(sources)) | |
secondary_source = np.zeros_like(sources[next_stem]) | |
for v in sources.values(): | |
secondary_source += v | |
self.secondary_source = secondary_source.T | |
else: | |
self.secondary_source, raw_mix = source_primary, self.match_frequency_pitch(mix) | |
self.secondary_source = spec_utils.to_shape(self.secondary_source, raw_mix.shape) | |
if self.is_invert_spec: | |
self.secondary_source = spec_utils.invert_stem(raw_mix, self.secondary_source) | |
else: | |
self.secondary_source = (-self.secondary_source.T+raw_mix.T) | |
self.secondary_source_map = self.final_process(secondary_stem_path, self.secondary_source, self.secondary_source_secondary, self.secondary_stem, samplerate) | |
if not self.is_secondary_stem_only: | |
primary_stem_path = os.path.join(self.export_path, f'{self.audio_file_base}_({self.primary_stem}).wav') | |
if not isinstance(self.primary_source, np.ndarray): | |
self.primary_source = source_primary.T | |
self.primary_source_map = self.final_process(primary_stem_path, self.primary_source, self.secondary_source_primary, self.primary_stem, samplerate) | |
clear_gpu_cache() | |
secondary_sources = {**self.primary_source_map, **self.secondary_source_map} | |
self.process_vocal_split_chain(secondary_sources) | |
if self.is_secondary_model or self.is_pre_proc_model: | |
return secondary_sources | |
def demix(self, mix): | |
sr_pitched = 441000 | |
org_mix = mix | |
if self.is_pitch_change: | |
mix, sr_pitched = spec_utils.change_pitch_semitones(mix, 44100, semitone_shift=-self.semitone_shift) | |
model = TFC_TDF_net(self.mdx_c_configs, device=self.device) | |
model.load_state_dict(torch.load(self.model_path, map_location=cpu)) | |
model.to(self.device).eval() | |
mix = torch.tensor(mix, dtype=torch.float32) | |
try: | |
S = model.num_target_instruments | |
except Exception as e: | |
S = model.module.num_target_instruments | |
mdx_segment_size = self.mdx_c_configs.inference.dim_t if self.is_mdx_c_seg_def else self.mdx_segment_size | |
batch_size = self.mdx_batch_size | |
chunk_size = self.mdx_c_configs.audio.hop_length * (mdx_segment_size - 1) | |
overlap = self.overlap_mdx23 | |
hop_size = chunk_size // overlap | |
mix_shape = mix.shape[1] | |
pad_size = hop_size - (mix_shape - chunk_size) % hop_size | |
mix = torch.cat([torch.zeros(2, chunk_size - hop_size), mix, torch.zeros(2, pad_size + chunk_size - hop_size)], 1) | |
chunks = mix.unfold(1, chunk_size, hop_size).transpose(0, 1) | |
batches = [chunks[i : i + batch_size] for i in range(0, len(chunks), batch_size)] | |
X = torch.zeros(S, *mix.shape) if S > 1 else torch.zeros_like(mix) | |
X = X.to(self.device) | |
with torch.no_grad(): | |
cnt = 0 | |
for batch in batches: | |
self.running_inference_progress_bar(len(batches)) | |
x = model(batch.to(self.device)) | |
for w in x: | |
X[..., cnt * hop_size : cnt * hop_size + chunk_size] += w | |
cnt += 1 | |
estimated_sources = X[..., chunk_size - hop_size:-(pad_size + chunk_size - hop_size)] / overlap | |
del X | |
pitch_fix = lambda s:self.pitch_fix(s, sr_pitched, org_mix) | |
if S > 1: | |
sources = {k: pitch_fix(v) if self.is_pitch_change else v for k, v in zip(self.mdx_c_configs.training.instruments, estimated_sources.cpu().detach().numpy())} | |
del estimated_sources | |
if self.is_denoise_model: | |
if VOCAL_STEM in sources.keys() and INST_STEM in sources.keys(): | |
sources[VOCAL_STEM] = vr_denoiser(sources[VOCAL_STEM], self.device, model_path=self.DENOISER_MODEL) | |
if sources[VOCAL_STEM].shape[1] != org_mix.shape[1]: | |
sources[VOCAL_STEM] = spec_utils.match_array_shapes(sources[VOCAL_STEM], org_mix) | |
sources[INST_STEM] = org_mix - sources[VOCAL_STEM] | |
return sources | |
else: | |
est_s = estimated_sources.cpu().detach().numpy() | |
del estimated_sources | |
return pitch_fix(est_s) if self.is_pitch_change else est_s | |
class SeperateDemucs(SeperateAttributes): | |
def seperate(self): | |
samplerate = 44100 | |
source = None | |
model_scale = None | |
stem_source = None | |
stem_source_secondary = None | |
inst_mix = None | |
inst_source = None | |
is_no_write = False | |
is_no_piano_guitar = False | |
is_no_cache = False | |
if self.primary_model_name == self.model_basename and isinstance(self.primary_sources, np.ndarray) and not self.pre_proc_model: | |
source = self.primary_sources | |
self.load_cached_sources() | |
else: | |
self.start_inference_console_write() | |
is_no_cache = True | |
mix = prepare_mix(self.audio_file) | |
if is_no_cache: | |
if self.demucs_version == DEMUCS_V1: | |
if str(self.model_path).endswith(".gz"): | |
self.model_path = gzip.open(self.model_path, "rb") | |
klass, args, kwargs, state = torch.load(self.model_path) | |
self.demucs = klass(*args, **kwargs) | |
self.demucs.to(self.device) | |
self.demucs.load_state_dict(state) | |
elif self.demucs_version == DEMUCS_V2: | |
self.demucs = auto_load_demucs_model_v2(self.demucs_source_list, self.model_path) | |
self.demucs.to(self.device) | |
self.demucs.load_state_dict(torch.load(self.model_path)) | |
self.demucs.eval() | |
else: | |
self.demucs = HDemucs(sources=self.demucs_source_list) | |
self.demucs = _gm(name=os.path.splitext(os.path.basename(self.model_path))[0], | |
repo=Path(os.path.dirname(self.model_path))) | |
self.demucs = demucs_segments(self.segment, self.demucs) | |
self.demucs.to(self.device) | |
self.demucs.eval() | |
if self.pre_proc_model: | |
if self.primary_stem not in [VOCAL_STEM, INST_STEM]: | |
is_no_write = True | |
self.write_to_console(DONE, base_text='') | |
mix_no_voc = process_secondary_model(self.pre_proc_model, self.process_data, is_pre_proc_model=True) | |
inst_mix = prepare_mix(mix_no_voc[INST_STEM]) | |
self.process_iteration() | |
self.running_inference_console_write(is_no_write=is_no_write) | |
inst_source = self.demix_demucs(inst_mix) | |
self.process_iteration() | |
self.running_inference_console_write(is_no_write=is_no_write) if not self.pre_proc_model else None | |
if self.primary_model_name == self.model_basename and isinstance(self.primary_sources, np.ndarray) and self.pre_proc_model: | |
source = self.primary_sources | |
else: | |
source = self.demix_demucs(mix) | |
self.write_to_console(DONE, base_text='') | |
del self.demucs | |
clear_gpu_cache() | |
if isinstance(inst_source, np.ndarray): | |
source_reshape = spec_utils.reshape_sources(inst_source[self.demucs_source_map[VOCAL_STEM]], source[self.demucs_source_map[VOCAL_STEM]]) | |
inst_source[self.demucs_source_map[VOCAL_STEM]] = source_reshape | |
source = inst_source | |
if isinstance(source, np.ndarray): | |
if len(source) == 2: | |
self.demucs_source_map = DEMUCS_2_SOURCE_MAPPER | |
else: | |
self.demucs_source_map = DEMUCS_6_SOURCE_MAPPER if len(source) == 6 else DEMUCS_4_SOURCE_MAPPER | |
if len(source) == 6 and self.process_data['is_ensemble_master'] or len(source) == 6 and self.is_secondary_model: | |
is_no_piano_guitar = True | |
six_stem_other_source = list(source) | |
six_stem_other_source = [i for n, i in enumerate(source) if n in [self.demucs_source_map[OTHER_STEM], self.demucs_source_map[GUITAR_STEM], self.demucs_source_map[PIANO_STEM]]] | |
other_source = np.zeros_like(six_stem_other_source[0]) | |
for i in six_stem_other_source: | |
other_source += i | |
source_reshape = spec_utils.reshape_sources(source[self.demucs_source_map[OTHER_STEM]], other_source) | |
source[self.demucs_source_map[OTHER_STEM]] = source_reshape | |
if not self.is_vocal_split_model: | |
self.cache_source(source) | |
if (self.demucs_stems == ALL_STEMS and not self.process_data['is_ensemble_master']) or self.is_4_stem_ensemble and not self.is_return_dual: | |
for stem_name, stem_value in self.demucs_source_map.items(): | |
if self.is_secondary_model_activated and not self.is_secondary_model and not stem_value >= 4: | |
if self.secondary_model_4_stem[stem_value]: | |
model_scale = self.secondary_model_4_stem_scale[stem_value] | |
stem_source_secondary = process_secondary_model(self.secondary_model_4_stem[stem_value], self.process_data, main_model_primary_stem_4_stem=stem_name, is_source_load=True, is_return_dual=False) | |
if isinstance(stem_source_secondary, np.ndarray): | |
stem_source_secondary = stem_source_secondary[1 if self.secondary_model_4_stem[stem_value].demucs_stem_count == 2 else stem_value].T | |
elif type(stem_source_secondary) is dict: | |
stem_source_secondary = stem_source_secondary[stem_name] | |
stem_source_secondary = None if stem_value >= 4 else stem_source_secondary | |
stem_path = os.path.join(self.export_path, f'{self.audio_file_base}_({stem_name}).wav') | |
stem_source = source[stem_value].T | |
stem_source = self.process_secondary_stem(stem_source, secondary_model_source=stem_source_secondary, model_scale=model_scale) | |
self.write_audio(stem_path, stem_source, samplerate, stem_name=stem_name) | |
if stem_name == VOCAL_STEM and not self.is_sec_bv_rebalance: | |
self.process_vocal_split_chain({VOCAL_STEM:stem_source}) | |
if self.is_secondary_model: | |
return source | |
else: | |
if self.is_secondary_model_activated and self.secondary_model: | |
self.secondary_source_primary, self.secondary_source_secondary = process_secondary_model(self.secondary_model, self.process_data, main_process_method=self.process_method) | |
if not self.is_primary_stem_only: | |
def secondary_save(sec_stem_name, source, raw_mixture=None, is_inst_mixture=False): | |
secondary_source = self.secondary_source if not is_inst_mixture else None | |
secondary_stem_path = os.path.join(self.export_path, f'{self.audio_file_base}_({sec_stem_name}).wav') | |
secondary_source_secondary = None | |
if not isinstance(secondary_source, np.ndarray): | |
if self.is_demucs_combine_stems: | |
source = list(source) | |
if is_inst_mixture: | |
source = [i for n, i in enumerate(source) if not n in [self.demucs_source_map[self.primary_stem], self.demucs_source_map[VOCAL_STEM]]] | |
else: | |
source.pop(self.demucs_source_map[self.primary_stem]) | |
source = source[:len(source) - 2] if is_no_piano_guitar else source | |
secondary_source = np.zeros_like(source[0]) | |
for i in source: | |
secondary_source += i | |
secondary_source = secondary_source.T | |
else: | |
if not isinstance(raw_mixture, np.ndarray): | |
raw_mixture = prepare_mix(self.audio_file) | |
secondary_source = source[self.demucs_source_map[self.primary_stem]] | |
if self.is_invert_spec: | |
secondary_source = spec_utils.invert_stem(raw_mixture, secondary_source) | |
else: | |
raw_mixture = spec_utils.reshape_sources(secondary_source, raw_mixture) | |
secondary_source = (-secondary_source.T+raw_mixture.T) | |
if not is_inst_mixture: | |
self.secondary_source = secondary_source | |
secondary_source_secondary = self.secondary_source_secondary | |
self.secondary_source = self.process_secondary_stem(secondary_source, secondary_source_secondary) | |
self.secondary_source_map = {self.secondary_stem: self.secondary_source} | |
self.write_audio(secondary_stem_path, secondary_source, samplerate, stem_name=sec_stem_name) | |
secondary_save(self.secondary_stem, source, raw_mixture=mix) | |
if self.is_demucs_pre_proc_model_inst_mix and self.pre_proc_model and not self.is_4_stem_ensemble: | |
secondary_save(f"{self.secondary_stem} {INST_STEM}", source, raw_mixture=inst_mix, is_inst_mixture=True) | |
if not self.is_secondary_stem_only: | |
primary_stem_path = os.path.join(self.export_path, f'{self.audio_file_base}_({self.primary_stem}).wav') | |
if not isinstance(self.primary_source, np.ndarray): | |
self.primary_source = source[self.demucs_source_map[self.primary_stem]].T | |
self.primary_source_map = self.final_process(primary_stem_path, self.primary_source, self.secondary_source_primary, self.primary_stem, samplerate) | |
secondary_sources = {**self.primary_source_map, **self.secondary_source_map} | |
self.process_vocal_split_chain(secondary_sources) | |
if self.is_secondary_model: | |
return secondary_sources | |
def demix_demucs(self, mix): | |
org_mix = mix | |
if self.is_pitch_change: | |
mix, sr_pitched = spec_utils.change_pitch_semitones(mix, 44100, semitone_shift=-self.semitone_shift) | |
processed = {} | |
mix = torch.tensor(mix, dtype=torch.float32) | |
ref = mix.mean(0) | |
mix = (mix - ref.mean()) / ref.std() | |
mix_infer = mix | |
with torch.no_grad(): | |
if self.demucs_version == DEMUCS_V1: | |
sources = apply_model_v1(self.demucs, | |
mix_infer.to(self.device), | |
self.shifts, | |
self.is_split_mode, | |
set_progress_bar=self.set_progress_bar) | |
elif self.demucs_version == DEMUCS_V2: | |
sources = apply_model_v2(self.demucs, | |
mix_infer.to(self.device), | |
self.shifts, | |
self.is_split_mode, | |
self.overlap, | |
set_progress_bar=self.set_progress_bar) | |
else: | |
sources = apply_model(self.demucs, | |
mix_infer[None], | |
self.shifts, | |
self.is_split_mode, | |
self.overlap, | |
static_shifts=1 if self.shifts == 0 else self.shifts, | |
set_progress_bar=self.set_progress_bar, | |
device=self.device)[0] | |
sources = (sources * ref.std() + ref.mean()).cpu().numpy() | |
sources[[0,1]] = sources[[1,0]] | |
processed[mix] = sources[:,:,0:None].copy() | |
sources = list(processed.values()) | |
sources = [s[:,:,0:None] for s in sources] | |
#sources = [self.pitch_fix(s[:,:,0:None], sr_pitched, org_mix) if self.is_pitch_change else s[:,:,0:None] for s in sources] | |
sources = np.concatenate(sources, axis=-1) | |
if self.is_pitch_change: | |
sources = np.stack([self.pitch_fix(stem, sr_pitched, org_mix) for stem in sources]) | |
return sources | |
class SeperateVR(SeperateAttributes): | |
def seperate(self): | |
if self.primary_model_name == self.model_basename and isinstance(self.primary_sources, tuple): | |
y_spec, v_spec = self.primary_sources | |
self.load_cached_sources() | |
else: | |
self.start_inference_console_write() | |
device = self.device | |
nn_arch_sizes = [ | |
31191, # default | |
33966, 56817, 123821, 123812, 129605, 218409, 537238, 537227] | |
vr_5_1_models = [56817, 218409] | |
model_size = math.ceil(os.stat(self.model_path).st_size / 1024) | |
nn_arch_size = min(nn_arch_sizes, key=lambda x:abs(x-model_size)) | |
if nn_arch_size in vr_5_1_models or self.is_vr_51_model: | |
self.model_run = nets_new.CascadedNet(self.mp.param['bins'] * 2, | |
nn_arch_size, | |
nout=self.model_capacity[0], | |
nout_lstm=self.model_capacity[1]) | |
self.is_vr_51_model = True | |
else: | |
self.model_run = nets.determine_model_capacity(self.mp.param['bins'] * 2, nn_arch_size) | |
self.model_run.load_state_dict(torch.load(self.model_path, map_location=cpu)) | |
self.model_run.to(device) | |
self.running_inference_console_write() | |
y_spec, v_spec = self.inference_vr(self.loading_mix(), device, self.aggressiveness) | |
if not self.is_vocal_split_model: | |
self.cache_source((y_spec, v_spec)) | |
self.write_to_console(DONE, base_text='') | |
if self.is_secondary_model_activated and self.secondary_model: | |
self.secondary_source_primary, self.secondary_source_secondary = process_secondary_model(self.secondary_model, self.process_data, main_process_method=self.process_method, main_model_primary=self.primary_stem) | |
if not self.is_secondary_stem_only: | |
primary_stem_path = os.path.join(self.export_path, f'{self.audio_file_base}_({self.primary_stem}).wav') | |
if not isinstance(self.primary_source, np.ndarray): | |
self.primary_source = self.spec_to_wav(y_spec).T | |
if not self.model_samplerate == 44100: | |
self.primary_source = librosa.resample(self.primary_source.T, orig_sr=self.model_samplerate, target_sr=44100).T | |
self.primary_source_map = self.final_process(primary_stem_path, self.primary_source, self.secondary_source_primary, self.primary_stem, 44100) | |
if not self.is_primary_stem_only: | |
secondary_stem_path = os.path.join(self.export_path, f'{self.audio_file_base}_({self.secondary_stem}).wav') | |
if not isinstance(self.secondary_source, np.ndarray): | |
self.secondary_source = self.spec_to_wav(v_spec).T | |
if not self.model_samplerate == 44100: | |
self.secondary_source = librosa.resample(self.secondary_source.T, orig_sr=self.model_samplerate, target_sr=44100).T | |
self.secondary_source_map = self.final_process(secondary_stem_path, self.secondary_source, self.secondary_source_secondary, self.secondary_stem, 44100) | |
clear_gpu_cache() | |
secondary_sources = {**self.primary_source_map, **self.secondary_source_map} | |
self.process_vocal_split_chain(secondary_sources) | |
if self.is_secondary_model: | |
return secondary_sources | |
def loading_mix(self): | |
X_wave, X_spec_s = {}, {} | |
bands_n = len(self.mp.param['band']) | |
audio_file = spec_utils.write_array_to_mem(self.audio_file, subtype=self.wav_type_set) | |
is_mp3 = audio_file.endswith('.mp3') if isinstance(audio_file, str) else False | |
for d in range(bands_n, 0, -1): | |
bp = self.mp.param['band'][d] | |
if OPERATING_SYSTEM == 'Darwin': | |
wav_resolution = 'polyphase' if SYSTEM_PROC == ARM or ARM in SYSTEM_ARCH else bp['res_type'] | |
else: | |
wav_resolution = bp['res_type'] | |
if d == bands_n: # high-end band | |
X_wave[d], _ = librosa.load(audio_file, bp['sr'], False, dtype=np.float32, res_type=wav_resolution) | |
X_spec_s[d] = spec_utils.wave_to_spectrogram(X_wave[d], bp['hl'], bp['n_fft'], self.mp, band=d, is_v51_model=self.is_vr_51_model) | |
if not np.any(X_wave[d]) and is_mp3: | |
X_wave[d] = rerun_mp3(audio_file, bp['sr']) | |
if X_wave[d].ndim == 1: | |
X_wave[d] = np.asarray([X_wave[d], X_wave[d]]) | |
else: # lower bands | |
X_wave[d] = librosa.resample(X_wave[d+1], self.mp.param['band'][d+1]['sr'], bp['sr'], res_type=wav_resolution) | |
X_spec_s[d] = spec_utils.wave_to_spectrogram(X_wave[d], bp['hl'], bp['n_fft'], self.mp, band=d, is_v51_model=self.is_vr_51_model) | |
if d == bands_n and self.high_end_process != 'none': | |
self.input_high_end_h = (bp['n_fft']//2 - bp['crop_stop']) + (self.mp.param['pre_filter_stop'] - self.mp.param['pre_filter_start']) | |
self.input_high_end = X_spec_s[d][:, bp['n_fft']//2-self.input_high_end_h:bp['n_fft']//2, :] | |
X_spec = spec_utils.combine_spectrograms(X_spec_s, self.mp, is_v51_model=self.is_vr_51_model) | |
del X_wave, X_spec_s, audio_file | |
return X_spec | |
def inference_vr(self, X_spec, device, aggressiveness): | |
def _execute(X_mag_pad, roi_size): | |
X_dataset = [] | |
patches = (X_mag_pad.shape[2] - 2 * self.model_run.offset) // roi_size | |
total_iterations = patches//self.batch_size if not self.is_tta else (patches//self.batch_size)*2 | |
for i in range(patches): | |
start = i * roi_size | |
X_mag_window = X_mag_pad[:, :, start:start + self.window_size] | |
X_dataset.append(X_mag_window) | |
X_dataset = np.asarray(X_dataset) | |
self.model_run.eval() | |
with torch.no_grad(): | |
mask = [] | |
for i in range(0, patches, self.batch_size): | |
self.progress_value += 1 | |
if self.progress_value >= total_iterations: | |
self.progress_value = total_iterations | |
self.set_progress_bar(0.1, 0.8/total_iterations*self.progress_value) | |
X_batch = X_dataset[i: i + self.batch_size] | |
X_batch = torch.from_numpy(X_batch).to(device) | |
pred = self.model_run.predict_mask(X_batch) | |
if not pred.size()[3] > 0: | |
raise Exception(ERROR_MAPPER[WINDOW_SIZE_ERROR]) | |
pred = pred.detach().cpu().numpy() | |
pred = np.concatenate(pred, axis=2) | |
mask.append(pred) | |
if len(mask) == 0: | |
raise Exception(ERROR_MAPPER[WINDOW_SIZE_ERROR]) | |
mask = np.concatenate(mask, axis=2) | |
return mask | |
def postprocess(mask, X_mag, X_phase): | |
is_non_accom_stem = False | |
for stem in NON_ACCOM_STEMS: | |
if stem == self.primary_stem: | |
is_non_accom_stem = True | |
mask = spec_utils.adjust_aggr(mask, is_non_accom_stem, aggressiveness) | |
if self.is_post_process: | |
mask = spec_utils.merge_artifacts(mask, thres=self.post_process_threshold) | |
y_spec = mask * X_mag * np.exp(1.j * X_phase) | |
v_spec = (1 - mask) * X_mag * np.exp(1.j * X_phase) | |
return y_spec, v_spec | |
X_mag, X_phase = spec_utils.preprocess(X_spec) | |
n_frame = X_mag.shape[2] | |
pad_l, pad_r, roi_size = spec_utils.make_padding(n_frame, self.window_size, self.model_run.offset) | |
X_mag_pad = np.pad(X_mag, ((0, 0), (0, 0), (pad_l, pad_r)), mode='constant') | |
X_mag_pad /= X_mag_pad.max() | |
mask = _execute(X_mag_pad, roi_size) | |
if self.is_tta: | |
pad_l += roi_size // 2 | |
pad_r += roi_size // 2 | |
X_mag_pad = np.pad(X_mag, ((0, 0), (0, 0), (pad_l, pad_r)), mode='constant') | |
X_mag_pad /= X_mag_pad.max() | |
mask_tta = _execute(X_mag_pad, roi_size) | |
mask_tta = mask_tta[:, :, roi_size // 2:] | |
mask = (mask[:, :, :n_frame] + mask_tta[:, :, :n_frame]) * 0.5 | |
else: | |
mask = mask[:, :, :n_frame] | |
y_spec, v_spec = postprocess(mask, X_mag, X_phase) | |
return y_spec, v_spec | |
def spec_to_wav(self, spec): | |
if self.high_end_process.startswith('mirroring') and isinstance(self.input_high_end, np.ndarray) and self.input_high_end_h: | |
input_high_end_ = spec_utils.mirroring(self.high_end_process, spec, self.input_high_end, self.mp) | |
wav = spec_utils.cmb_spectrogram_to_wave(spec, self.mp, self.input_high_end_h, input_high_end_, is_v51_model=self.is_vr_51_model) | |
else: | |
wav = spec_utils.cmb_spectrogram_to_wave(spec, self.mp, is_v51_model=self.is_vr_51_model) | |
return wav | |
def process_secondary_model(secondary_model: ModelData, | |
process_data, | |
main_model_primary_stem_4_stem=None, | |
is_source_load=False, | |
main_process_method=None, | |
is_pre_proc_model=False, | |
is_return_dual=True, | |
main_model_primary=None): | |
if not is_pre_proc_model: | |
process_iteration = process_data['process_iteration'] | |
process_iteration() | |
if secondary_model.process_method == VR_ARCH_TYPE: | |
seperator = SeperateVR(secondary_model, process_data, main_model_primary_stem_4_stem=main_model_primary_stem_4_stem, main_process_method=main_process_method, main_model_primary=main_model_primary) | |
if secondary_model.process_method == MDX_ARCH_TYPE: | |
if secondary_model.is_mdx_c: | |
seperator = SeperateMDXC(secondary_model, process_data, main_model_primary_stem_4_stem=main_model_primary_stem_4_stem, main_process_method=main_process_method, is_return_dual=is_return_dual, main_model_primary=main_model_primary) | |
else: | |
seperator = SeperateMDX(secondary_model, process_data, main_model_primary_stem_4_stem=main_model_primary_stem_4_stem, main_process_method=main_process_method, main_model_primary=main_model_primary) | |
if secondary_model.process_method == DEMUCS_ARCH_TYPE: | |
seperator = SeperateDemucs(secondary_model, process_data, main_model_primary_stem_4_stem=main_model_primary_stem_4_stem, main_process_method=main_process_method, is_return_dual=is_return_dual, main_model_primary=main_model_primary) | |
secondary_sources = seperator.seperate() | |
if type(secondary_sources) is dict and not is_source_load and not is_pre_proc_model: | |
return gather_sources(secondary_model.primary_model_primary_stem, secondary_stem(secondary_model.primary_model_primary_stem), secondary_sources) | |
else: | |
return secondary_sources | |
def process_chain_model(secondary_model: ModelData, | |
process_data, | |
vocal_stem_path, | |
master_vocal_source, | |
master_inst_source=None): | |
process_iteration = process_data['process_iteration'] | |
process_iteration() | |
if secondary_model.bv_model_rebalance: | |
vocal_source = spec_utils.reduce_mix_bv(master_inst_source, master_vocal_source, reduction_rate=secondary_model.bv_model_rebalance) | |
else: | |
vocal_source = master_vocal_source | |
vocal_stem_path = [vocal_source, os.path.splitext(os.path.basename(vocal_stem_path))[0]] | |
if secondary_model.process_method == VR_ARCH_TYPE: | |
seperator = SeperateVR(secondary_model, process_data, vocal_stem_path=vocal_stem_path, master_inst_source=master_inst_source, master_vocal_source=master_vocal_source) | |
if secondary_model.process_method == MDX_ARCH_TYPE: | |
if secondary_model.is_mdx_c: | |
seperator = SeperateMDXC(secondary_model, process_data, vocal_stem_path=vocal_stem_path, master_inst_source=master_inst_source, master_vocal_source=master_vocal_source) | |
else: | |
seperator = SeperateMDX(secondary_model, process_data, vocal_stem_path=vocal_stem_path, master_inst_source=master_inst_source, master_vocal_source=master_vocal_source) | |
if secondary_model.process_method == DEMUCS_ARCH_TYPE: | |
seperator = SeperateDemucs(secondary_model, process_data, vocal_stem_path=vocal_stem_path, master_inst_source=master_inst_source, master_vocal_source=master_vocal_source) | |
secondary_sources = seperator.seperate() | |
if type(secondary_sources) is dict: | |
return secondary_sources | |
else: | |
return None | |
def gather_sources(primary_stem_name, secondary_stem_name, secondary_sources: dict): | |
source_primary = False | |
source_secondary = False | |
for key, value in secondary_sources.items(): | |
if key in primary_stem_name: | |
source_primary = value | |
if key in secondary_stem_name: | |
source_secondary = value | |
return source_primary, source_secondary | |
def prepare_mix(mix): | |
audio_path = mix | |
if not isinstance(mix, np.ndarray): | |
mix, sr = librosa.load(mix, mono=False, sr=44100) | |
else: | |
mix = mix.T | |
if isinstance(audio_path, str): | |
if not np.any(mix) and audio_path.endswith('.mp3'): | |
mix = rerun_mp3(audio_path) | |
if mix.ndim == 1: | |
mix = np.asfortranarray([mix,mix]) | |
return mix | |
def rerun_mp3(audio_file, sample_rate=44100): | |
with audioread.audio_open(audio_file) as f: | |
track_length = int(f.duration) | |
return librosa.load(audio_file, duration=track_length, mono=False, sr=sample_rate)[0] | |
def save_format(audio_path, save_format, mp3_bit_set): | |
if not save_format == WAV: | |
if OPERATING_SYSTEM == 'Darwin': | |
FFMPEG_PATH = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'ffmpeg') | |
pydub.AudioSegment.converter = FFMPEG_PATH | |
musfile = pydub.AudioSegment.from_wav(audio_path) | |
if save_format == FLAC: | |
audio_path_flac = audio_path.replace(".wav", ".flac") | |
musfile.export(audio_path_flac, format="flac") | |
if save_format == MP3: | |
audio_path_mp3 = audio_path.replace(".wav", ".mp3") | |
try: | |
musfile.export(audio_path_mp3, format="mp3", bitrate=mp3_bit_set, codec="libmp3lame") | |
except Exception as e: | |
print(e) | |
musfile.export(audio_path_mp3, format="mp3", bitrate=mp3_bit_set) | |
try: | |
os.remove(audio_path) | |
except Exception as e: | |
print(e) | |
def pitch_shift(mix): | |
new_sr = 31183 | |
# Resample audio file | |
resampled_audio = signal.resample_poly(mix, new_sr, 44100) | |
return resampled_audio | |
def list_to_dictionary(lst): | |
dictionary = {item: index for index, item in enumerate(lst)} | |
return dictionary | |
def vr_denoiser(X, device, hop_length=1024, n_fft=2048, cropsize=256, is_deverber=False, model_path=None): | |
batchsize = 4 | |
if is_deverber: | |
nout, nout_lstm = 64, 128 | |
mp = ModelParameters(os.path.join('lib_v5', 'vr_network', 'modelparams', '4band_v3.json')) | |
n_fft = mp.param['bins'] * 2 | |
else: | |
mp = None | |
hop_length=1024 | |
nout, nout_lstm = 16, 128 | |
model = nets_new.CascadedNet(n_fft, nout=nout, nout_lstm=nout_lstm) | |
model.load_state_dict(torch.load(model_path, map_location=cpu)) | |
model.to(device) | |
if mp is None: | |
X_spec = spec_utils.wave_to_spectrogram_old(X, hop_length, n_fft) | |
else: | |
X_spec = loading_mix(X.T, mp) | |
#PreProcess | |
X_mag = np.abs(X_spec) | |
X_phase = np.angle(X_spec) | |
#Sep | |
n_frame = X_mag.shape[2] | |
pad_l, pad_r, roi_size = spec_utils.make_padding(n_frame, cropsize, model.offset) | |
X_mag_pad = np.pad(X_mag, ((0, 0), (0, 0), (pad_l, pad_r)), mode='constant') | |
X_mag_pad /= X_mag_pad.max() | |
X_dataset = [] | |
patches = (X_mag_pad.shape[2] - 2 * model.offset) // roi_size | |
for i in range(patches): | |
start = i * roi_size | |
X_mag_crop = X_mag_pad[:, :, start:start + cropsize] | |
X_dataset.append(X_mag_crop) | |
X_dataset = np.asarray(X_dataset) | |
model.eval() | |
with torch.no_grad(): | |
mask = [] | |
# To reduce the overhead, dataloader is not used. | |
for i in range(0, patches, batchsize): | |
X_batch = X_dataset[i: i + batchsize] | |
X_batch = torch.from_numpy(X_batch).to(device) | |
pred = model.predict_mask(X_batch) | |
pred = pred.detach().cpu().numpy() | |
pred = np.concatenate(pred, axis=2) | |
mask.append(pred) | |
mask = np.concatenate(mask, axis=2) | |
mask = mask[:, :, :n_frame] | |
#Post Proc | |
if is_deverber: | |
v_spec = mask * X_mag * np.exp(1.j * X_phase) | |
y_spec = (1 - mask) * X_mag * np.exp(1.j * X_phase) | |
else: | |
v_spec = (1 - mask) * X_mag * np.exp(1.j * X_phase) | |
if mp is None: | |
wave = spec_utils.spectrogram_to_wave_old(v_spec, hop_length=1024) | |
else: | |
wave = spec_utils.cmb_spectrogram_to_wave(v_spec, mp, is_v51_model=True).T | |
wave = spec_utils.match_array_shapes(wave, X) | |
if is_deverber: | |
wave_2 = spec_utils.cmb_spectrogram_to_wave(y_spec, mp, is_v51_model=True).T | |
wave_2 = spec_utils.match_array_shapes(wave_2, X) | |
return wave, wave_2 | |
else: | |
return wave | |
def loading_mix(X, mp): | |
X_wave, X_spec_s = {}, {} | |
bands_n = len(mp.param['band']) | |
for d in range(bands_n, 0, -1): | |
bp = mp.param['band'][d] | |
if OPERATING_SYSTEM == 'Darwin': | |
wav_resolution = 'polyphase' if SYSTEM_PROC == ARM or ARM in SYSTEM_ARCH else bp['res_type'] | |
else: | |
wav_resolution = 'polyphase'#bp['res_type'] | |
if d == bands_n: # high-end band | |
X_wave[d] = X | |
else: # lower bands | |
X_wave[d] = librosa.resample(X_wave[d+1], mp.param['band'][d+1]['sr'], bp['sr'], res_type=wav_resolution) | |
X_spec_s[d] = spec_utils.wave_to_spectrogram(X_wave[d], bp['hl'], bp['n_fft'], mp, band=d, is_v51_model=True) | |
# if d == bands_n and is_high_end_process: | |
# input_high_end_h = (bp['n_fft']//2 - bp['crop_stop']) + (mp.param['pre_filter_stop'] - mp.param['pre_filter_start']) | |
# input_high_end = X_spec_s[d][:, bp['n_fft']//2-input_high_end_h:bp['n_fft']//2, :] | |
X_spec = spec_utils.combine_spectrograms(X_spec_s, mp) | |
del X_wave, X_spec_s | |
return X_spec | |