Spaces:
Runtime error
Runtime error
| import torch | |
| import torch.nn as nn | |
| from .modules import TFC_TDF | |
| from pytorch_lightning import LightningModule | |
| dim_s = 4 | |
| class AbstractMDXNet(LightningModule): | |
| def __init__(self, target_name, lr, optimizer, dim_c, dim_f, dim_t, n_fft, hop_length, overlap): | |
| super().__init__() | |
| self.target_name = target_name | |
| self.lr = lr | |
| self.optimizer = optimizer | |
| self.dim_c = dim_c | |
| self.dim_f = dim_f | |
| self.dim_t = dim_t | |
| self.n_fft = n_fft | |
| self.n_bins = n_fft // 2 + 1 | |
| self.hop_length = hop_length | |
| self.window = nn.Parameter(torch.hann_window(window_length=self.n_fft, periodic=True), requires_grad=False) | |
| self.freq_pad = nn.Parameter(torch.zeros([1, dim_c, self.n_bins - self.dim_f, self.dim_t]), requires_grad=False) | |
| def get_optimizer(self): | |
| if self.optimizer == 'rmsprop': | |
| return torch.optim.RMSprop(self.parameters(), self.lr) | |
| if self.optimizer == 'adamw': | |
| return torch.optim.AdamW(self.parameters(), self.lr) | |
| class ConvTDFNet(AbstractMDXNet): | |
| def __init__(self, target_name, lr, optimizer, dim_c, dim_f, dim_t, n_fft, hop_length, | |
| num_blocks, l, g, k, bn, bias, overlap): | |
| super(ConvTDFNet, self).__init__( | |
| target_name, lr, optimizer, dim_c, dim_f, dim_t, n_fft, hop_length, overlap) | |
| #self.save_hyperparameters() | |
| self.num_blocks = num_blocks | |
| self.l = l | |
| self.g = g | |
| self.k = k | |
| self.bn = bn | |
| self.bias = bias | |
| if optimizer == 'rmsprop': | |
| norm = nn.BatchNorm2d | |
| if optimizer == 'adamw': | |
| norm = lambda input:nn.GroupNorm(2, input) | |
| self.n = num_blocks // 2 | |
| scale = (2, 2) | |
| self.first_conv = nn.Sequential( | |
| nn.Conv2d(in_channels=self.dim_c, out_channels=g, kernel_size=(1, 1)), | |
| norm(g), | |
| nn.ReLU(), | |
| ) | |
| f = self.dim_f | |
| c = g | |
| self.encoding_blocks = nn.ModuleList() | |
| self.ds = nn.ModuleList() | |
| for i in range(self.n): | |
| self.encoding_blocks.append(TFC_TDF(c, l, f, k, bn, bias=bias, norm=norm)) | |
| self.ds.append( | |
| nn.Sequential( | |
| nn.Conv2d(in_channels=c, out_channels=c + g, kernel_size=scale, stride=scale), | |
| norm(c + g), | |
| nn.ReLU() | |
| ) | |
| ) | |
| f = f // 2 | |
| c += g | |
| self.bottleneck_block = TFC_TDF(c, l, f, k, bn, bias=bias, norm=norm) | |
| self.decoding_blocks = nn.ModuleList() | |
| self.us = nn.ModuleList() | |
| for i in range(self.n): | |
| self.us.append( | |
| nn.Sequential( | |
| nn.ConvTranspose2d(in_channels=c, out_channels=c - g, kernel_size=scale, stride=scale), | |
| norm(c - g), | |
| nn.ReLU() | |
| ) | |
| ) | |
| f = f * 2 | |
| c -= g | |
| self.decoding_blocks.append(TFC_TDF(c, l, f, k, bn, bias=bias, norm=norm)) | |
| self.final_conv = nn.Sequential( | |
| nn.Conv2d(in_channels=c, out_channels=self.dim_c, kernel_size=(1, 1)), | |
| ) | |
| def forward(self, x): | |
| x = self.first_conv(x) | |
| x = x.transpose(-1, -2) | |
| ds_outputs = [] | |
| for i in range(self.n): | |
| x = self.encoding_blocks[i](x) | |
| ds_outputs.append(x) | |
| x = self.ds[i](x) | |
| x = self.bottleneck_block(x) | |
| for i in range(self.n): | |
| x = self.us[i](x) | |
| x *= ds_outputs[-i - 1] | |
| x = self.decoding_blocks[i](x) | |
| x = x.transpose(-1, -2) | |
| x = self.final_conv(x) | |
| return x | |
| class Mixer(nn.Module): | |
| def __init__(self, device, mixer_path): | |
| super(Mixer, self).__init__() | |
| self.linear = nn.Linear((dim_s+1)*2, dim_s*2, bias=False) | |
| self.load_state_dict( | |
| torch.load(mixer_path, map_location=device) | |
| ) | |
| def forward(self, x): | |
| x = x.reshape(1,(dim_s+1)*2,-1).transpose(-1,-2) | |
| x = self.linear(x) | |
| return x.transpose(-1,-2).reshape(dim_s,2,-1) |