Spaces:
Runtime error
Runtime error
initial commit
Browse files
app.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""Copy of russian model testing.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1c9k49wiWEvDa1zxIw65pUAsuzMlFn-tq
|
8 |
+
"""
|
9 |
+
|
10 |
+
!pip install gradio
|
11 |
+
!pip install translate
|
12 |
+
|
13 |
+
import nltk
|
14 |
+
from nltk.tokenize import word_tokenize
|
15 |
+
from nltk.corpus import stopwords
|
16 |
+
|
17 |
+
import pandas as pd
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
import tensorflow as tf
|
21 |
+
from tensorflow.keras.preprocessing.text import Tokenizer
|
22 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
23 |
+
from tensorflow.keras.models import Sequential
|
24 |
+
from tensorflow.keras.layers import Embedding, LSTM, Dense, Bidirectional
|
25 |
+
from nltk.corpus import stopwords
|
26 |
+
from nltk.stem import WordNetLemmatizer
|
27 |
+
import nltk
|
28 |
+
from nltk.translate.bleu_score import sentence_bleu
|
29 |
+
|
30 |
+
nltk.download('stopwords')
|
31 |
+
nltk.download('wordnet')
|
32 |
+
nltk.download('punkt')
|
33 |
+
|
34 |
+
url = 'https://raw.githubusercontent.com/Obai33/NLP_PoemGenerationDatasets/main/russianpoems.csv'
|
35 |
+
text_data = pd.read_csv(url)
|
36 |
+
|
37 |
+
# removing duplicates and missing values
|
38 |
+
text_data.drop_duplicates(inplace = True)
|
39 |
+
text_data.dropna(inplace = True)
|
40 |
+
text_data
|
41 |
+
|
42 |
+
text_data = text_data['text']
|
43 |
+
text_data = text_data[500:700]
|
44 |
+
|
45 |
+
# Tokenization and lowercasing
|
46 |
+
tokenizer = Tokenizer()
|
47 |
+
tokenizer.fit_on_texts(text_data)
|
48 |
+
|
49 |
+
total_words = len(tokenizer.word_index) + 1
|
50 |
+
|
51 |
+
input_sequences = []
|
52 |
+
for line in text_data:
|
53 |
+
token_list = tokenizer.texts_to_sequences([line])[0]
|
54 |
+
for i in range(1, len(token_list)):
|
55 |
+
n_gram_sequence = token_list[:i+1]
|
56 |
+
input_sequences.append(n_gram_sequence)
|
57 |
+
|
58 |
+
|
59 |
+
# pad sequences
|
60 |
+
max_sequence_len = 100
|
61 |
+
input_sequences = np.array(pad_sequences(input_sequences, maxlen=max_sequence_len, padding='pre'))
|
62 |
+
|
63 |
+
# create predictors and label
|
64 |
+
xs, labels = input_sequences[:,:-1],input_sequences[:,-1]
|
65 |
+
|
66 |
+
ys = tf.keras.utils.to_categorical(labels, num_classes=total_words)
|
67 |
+
|
68 |
+
import requests
|
69 |
+
# URL of the model
|
70 |
+
url = 'https://github.com/Obai33/NLP_PoemGenerationDatasets/raw/main/modelrus1.h5'
|
71 |
+
# Local file path to save the model
|
72 |
+
local_filename = 'modelrus1.h5'
|
73 |
+
|
74 |
+
# Download the model file
|
75 |
+
response = requests.get(url)
|
76 |
+
with open(local_filename, 'wb') as f:
|
77 |
+
f.write(response.content)
|
78 |
+
|
79 |
+
# Load the pre-trained model
|
80 |
+
model = tf.keras.models.load_model(local_filename)
|
81 |
+
|
82 |
+
# Import the necessary library for translation
|
83 |
+
import translate
|
84 |
+
|
85 |
+
# Function to translate text to English
|
86 |
+
def translate_to_english(text):
|
87 |
+
translator = translate.Translator(from_lang="ru", to_lang="en")
|
88 |
+
translated_text = translator.translate(text)
|
89 |
+
return translated_text
|
90 |
+
|
91 |
+
def generate_russian_text(seed_text, next_words=50):
|
92 |
+
generated_text = seed_text
|
93 |
+
for _ in range(next_words):
|
94 |
+
token_list = tokenizer.texts_to_sequences([generated_text])[0]
|
95 |
+
token_list = pad_sequences([token_list], maxlen=max_sequence_len-1, padding='pre')
|
96 |
+
predicted = np.argmax(model.predict(token_list), axis=-1)
|
97 |
+
output_word = ""
|
98 |
+
for word, index in tokenizer.word_index.items():
|
99 |
+
if index == predicted:
|
100 |
+
output_word = word
|
101 |
+
break
|
102 |
+
generated_text += " " + output_word
|
103 |
+
|
104 |
+
'''
|
105 |
+
token_list = tokenizer.encode(generated_text, add_special_tokens=False)
|
106 |
+
token_list = pad_sequences([token_list], maxlen=max_sequence_len-1, padding='pre')
|
107 |
+
predicted = np.argmax(model.predict(token_list), axis=-1)
|
108 |
+
output_word = tokenizer.decode(predicted[0])
|
109 |
+
generated_text += " " + output_word
|
110 |
+
'''
|
111 |
+
#reconnected_text = generated_text.replace(" ##", "")
|
112 |
+
t_text = translate_to_english(generated_text)
|
113 |
+
return generated_text, t_text
|
114 |
+
|
115 |
+
import gradio as gr
|
116 |
+
|
117 |
+
# Update Gradio interface to include both Arabic and English outputs
|
118 |
+
iface = gr.Interface(
|
119 |
+
fn=generate_russian_text,
|
120 |
+
inputs="text",
|
121 |
+
outputs=["text", "text"],
|
122 |
+
title="Russian Poetry Generation",
|
123 |
+
description="Enter Russian text to generate a small poem.",
|
124 |
+
theme="compact"
|
125 |
+
)
|
126 |
+
# Run the interface
|
127 |
+
iface.launch()
|