ic
Browse files
app.py
ADDED
|
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""Copy of english model testing.ipynb
|
| 3 |
+
|
| 4 |
+
Automatically generated by Colab.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/drive/13LT1keMRDkMSrOYjvzkneI_PaRnLQWl0
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
!pip install gradio
|
| 11 |
+
|
| 12 |
+
from nltk.corpus import stopwords
|
| 13 |
+
import pandas as pd
|
| 14 |
+
|
| 15 |
+
import numpy as np
|
| 16 |
+
import tensorflow as tf
|
| 17 |
+
from tensorflow.keras.preprocessing.text import Tokenizer
|
| 18 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
| 19 |
+
from tensorflow.keras.models import Sequential, Model
|
| 20 |
+
from tensorflow.keras.layers import Embedding, LSTM, Dense, Bidirectional, Input, GRU
|
| 21 |
+
|
| 22 |
+
from nltk.corpus import stopwords
|
| 23 |
+
from nltk.stem import WordNetLemmatizer
|
| 24 |
+
import nltk
|
| 25 |
+
import requests
|
| 26 |
+
nltk.download('stopwords')
|
| 27 |
+
nltk.download('wordnet')
|
| 28 |
+
nltk.download('punkt')
|
| 29 |
+
nltk.download('averaged_perceptron_tagger')
|
| 30 |
+
|
| 31 |
+
eurl = 'https://raw.githubusercontent.com/sofiagiaccotto/newengpoemdatasetNLP/main/poems.txt'
|
| 32 |
+
ans = requests.get(eurl)
|
| 33 |
+
edf = ans.text
|
| 34 |
+
|
| 35 |
+
tokenizer = Tokenizer()
|
| 36 |
+
|
| 37 |
+
corpus = edf.lower().split("\n")
|
| 38 |
+
|
| 39 |
+
tokenizer.fit_on_texts(corpus)
|
| 40 |
+
total_words = len(tokenizer.word_index) + 1
|
| 41 |
+
|
| 42 |
+
print(tokenizer.word_index)
|
| 43 |
+
print(total_words)
|
| 44 |
+
|
| 45 |
+
input_sequences = []
|
| 46 |
+
for line in corpus:
|
| 47 |
+
token_list = tokenizer.texts_to_sequences([line])[0]
|
| 48 |
+
for i in range(1, len(token_list)):
|
| 49 |
+
n_gram_sequence = token_list[:i+1]
|
| 50 |
+
input_sequences.append(n_gram_sequence)
|
| 51 |
+
|
| 52 |
+
# pad sequences
|
| 53 |
+
max_sequence_len = max([len(x) for x in input_sequences])
|
| 54 |
+
input_sequences = np.array(pad_sequences(input_sequences, maxlen=max_sequence_len, padding='pre'))
|
| 55 |
+
|
| 56 |
+
# create predictors and label
|
| 57 |
+
xs, labels = input_sequences[:,:-1],input_sequences[:,-1]
|
| 58 |
+
|
| 59 |
+
ys = tf.keras.utils.to_categorical(labels, num_classes=total_words)
|
| 60 |
+
|
| 61 |
+
import requests
|
| 62 |
+
# URL of the model
|
| 63 |
+
url = 'https://github.com/Obai33/NLP_PoemGenerationDatasets/raw/main/modeleng1.h5'
|
| 64 |
+
# Local file path to save the model
|
| 65 |
+
local_filename = 'modeleng1.h5'
|
| 66 |
+
|
| 67 |
+
# Download the model file
|
| 68 |
+
response = requests.get(url)
|
| 69 |
+
with open(local_filename, 'wb') as f:
|
| 70 |
+
f.write(response.content)
|
| 71 |
+
|
| 72 |
+
# Load the pre-trained model
|
| 73 |
+
model = tf.keras.models.load_model(local_filename)
|
| 74 |
+
|
| 75 |
+
def generate_english_text(seed_text, next_words=50):
|
| 76 |
+
generated_text = seed_text
|
| 77 |
+
for _ in range(next_words):
|
| 78 |
+
token_list = tokenizer.texts_to_sequences([generated_text])[0]
|
| 79 |
+
token_list = pad_sequences([token_list], maxlen=max_sequence_len-1, padding='pre')
|
| 80 |
+
predicted = np.argmax(model.predict(token_list), axis=-1)
|
| 81 |
+
output_word = ""
|
| 82 |
+
for word, index in tokenizer.word_index.items():
|
| 83 |
+
if index == predicted:
|
| 84 |
+
output_word = word
|
| 85 |
+
break
|
| 86 |
+
generated_text += " " + output_word
|
| 87 |
+
return generated_text
|
| 88 |
+
|
| 89 |
+
import gradio as gr
|
| 90 |
+
|
| 91 |
+
# Update Gradio interface to include both Arabic and English outputs
|
| 92 |
+
iface = gr.Interface(
|
| 93 |
+
fn=generate_english_text,
|
| 94 |
+
inputs="text",
|
| 95 |
+
outputs="text",
|
| 96 |
+
title="English Poetry Generation",
|
| 97 |
+
description="Enter English text to generate a small poem.",
|
| 98 |
+
theme="compact"
|
| 99 |
+
)
|
| 100 |
+
# Run the interface
|
| 101 |
+
iface.launch()
|