Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""app.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1CuRN-kiD-QDBFlev8vWpV3rVkjiWlaeP
|
8 |
+
"""
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torchaudio
|
12 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
+
|
14 |
+
print(device)
|
15 |
+
|
16 |
+
import IPython
|
17 |
+
import matplotlib.pyplot as plt
|
18 |
+
from torchaudio.utils import download_asset
|
19 |
+
|
20 |
+
ctc_preTrained_object = torchaudio.pipelines.WAV2VEC2_ASR_BASE_960H
|
21 |
+
|
22 |
+
model = ctc_preTrained_object.get_model().to(device)
|
23 |
+
|
24 |
+
!pip install flashlight-text
|
25 |
+
|
26 |
+
from torchaudio.models.decoder import download_pretrained_files
|
27 |
+
|
28 |
+
files = download_pretrained_files('librispeech-4-gram')
|
29 |
+
|
30 |
+
f = open(files.tokens, 'r')
|
31 |
+
|
32 |
+
from torchaudio.models.decoder import ctc_decoder
|
33 |
+
|
34 |
+
beam_search_decoder = ctc_decoder(
|
35 |
+
lexicon = files.lexicon,
|
36 |
+
tokens = files.tokens,
|
37 |
+
lm = files.lm,
|
38 |
+
nbest = 3,
|
39 |
+
beam_size = 3
|
40 |
+
)
|
41 |
+
|
42 |
+
import audio_support_functions as myFunc
|
43 |
+
|
44 |
+
def theaudio(x):
|
45 |
+
waveform, sample_rate = torchaudio.load(x)
|
46 |
+
waveform = waveform.to(device)
|
47 |
+
|
48 |
+
#myFunc.play_audio(waveform.cpu(), sample_rate)
|
49 |
+
|
50 |
+
waveform = waveform if sample_rate == ctc_preTrained_object.sample_rate else torchaudio.functional.resample(waveform, sample_rate, ctc_preTrained_object.sample_rate)
|
51 |
+
with torch.inference_mode():
|
52 |
+
pred_tokens, _ = model(waveform)
|
53 |
+
#print(pred_tokens.size())
|
54 |
+
|
55 |
+
pred_tokens = pred_tokens.to('cpu')
|
56 |
+
beam_search_result = beam_search_decoder(pred_tokens)
|
57 |
+
beam_search_transcript = " ".join(beam_search_result[0][0].words).strip()
|
58 |
+
return beam_search_transcript
|
59 |
+
|
60 |
+
import gradio as gr
|
61 |
+
import librosa
|
62 |
+
|
63 |
+
iface = gr.Interface(
|
64 |
+
fn=theaudio,
|
65 |
+
inputs=gr.Audio(type="filepath"),
|
66 |
+
outputs="text",
|
67 |
+
title="Audio Input Example",
|
68 |
+
description="Upload an audio file or record one to see its duration."
|
69 |
+
)
|
70 |
+
|
71 |
+
iface.launch()
|