File size: 6,170 Bytes
308f73c 8c1a582 308f73c 8c1a582 213ad26 8c1a582 9365321 8c1a582 9365321 8c1a582 213ad26 8c1a582 213ad26 8c1a582 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import gradio as gr
import pandas as pd
from src.display.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
FAQ_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
NUMERIC_INTERVALS,
TYPES,
AutoEvalColumn,
ModelType,
fields,
WeightType,
Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, H4_TOKEN, IS_PUBLIC, QUEUE_REPO, REPO_ID, RESULTS_REPO
from PIL import Image
# from src.populate import get_evaluation_queue_df, get_leaderboard_df
# from src.submission.submit import add_new_eval
# from src.tools.collections import update_collections
# from src.tools.plots import (
# create_metric_plot_obj,
# create_plot_df,
# create_scores_df,
# )
from dummydatagen import dummy_data_for_plot, create_metric_plot_obj_1, dummydf
import copy
def restart_space():
API.restart_space(repo_id=REPO_ID, token=H4_TOKEN)
gtbench_raw_data = dummydf()
methods = list(set(gtbench_raw_data['Method']))
# Searching and filtering
def update_table(
hidden_df: pd.DataFrame,
columns: list,
model1: list,
):
filtered_df = select_columns(hidden_df, columns)
filtered_df = filter_model1(filtered_df, model1)
return filtered_df
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
always_here_cols = [
"Model", "Agent", "Opponent Model", "Opponent Agent"
]
# We use COLS to maintain sorting
all_columns = metrics
if len(columns) == 0:
filtered_df = df[
always_here_cols +
[c for c in all_columns if c in df.columns]
]
return filtered_df
filtered_df = df[
always_here_cols +
[c for c in all_columns if c in df.columns and c in columns]
]
return filtered_df
def filter_model1(
df: pd.DataFrame, model_query: list
) -> pd.DataFrame:
# Show all models
if len(model_query) == 0:
return df
filtered_df = df
filtered_df = filtered_df[filtered_df["Model"].isin(
model_query)]
return filtered_df
metrics = ["Style-UA", "Style-IRA", "Style-CRA", "Object-UA", "Object-IRA", "Object-CRA", "FID", "run-time", "storage", "memory"]
demo = gr.Blocks(css=custom_css)
with demo:
with gr.Row():
gr.Image("./assets/logo.png", height="200px", width="200px", scale=0.1,
show_download_button=False, container=False)
gr.HTML(TITLE, elem_id="title")
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π
UnlearnCanvas Benchmark", elem_id="llm-benchmark-tab-table", id=0):
with gr.Row():
with gr.Column():
with gr.Row():
model1_column = gr.CheckboxGroup(
label="Unlearning Methods",
choices=methods,
interactive=True,
elem_id="filter-columns-type",
)
with gr.Row():
shown_columns_1 = gr.CheckboxGroup(
choices=["Style-UA", "Style-IRA", "Style-CRA"],
label="Style Unlearning Effectiveness",
elem_id="column-select",
interactive=True,
)
with gr.Row():
shown_columns_2 = gr.CheckboxGroup(
choices=["Object-UA", "Object-IRA", "Object-CRA"],
label="Object Unlearning Effectiveness",
elem_id="column-select",
interactive=True,
)
with gr.Row():
shown_columns_3 = gr.CheckboxGroup(
choices=["FID"],
label="Image Quality",
elem_id="column-select",
interactive=True,
)
with gr.Row():
shown_columns_4 = gr.CheckboxGroup(
choices=["Time (s)", "Memory (GB)", "Storage (GB)"],
label="Resource Costs",
elem_id="column-select",
interactive=True,
)
leaderboard_table = gr.components.Dataframe(
value=gtbench_raw_data,
elem_id="leaderboard-table",
interactive=False,
visible=True,
# column_widths=["2%", "33%"]
)
game_bench_df_for_search = gr.components.Dataframe(
value=gtbench_raw_data,
elem_id="leaderboard-table",
interactive=False,
visible=False,
# column_widths=["2%", "33%"]
)
for selector in [model1_column]:
selector.change(
update_table,
[
model1_column,
game_bench_df_for_search,
],
leaderboard_table,
queue=True,
)
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
gr.Markdown(FAQ_TEXT, elem_classes="markdown-text")
with gr.Row():
with gr.Accordion("π Citation", open=True):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=8,
elem_id="citation-button",
show_copy_button=True,
)
demo.launch()
|