OP7 commited on
Commit
80eb147
·
verified ·
1 Parent(s): a9ca561

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -52
app.py CHANGED
@@ -1,5 +1,5 @@
1
  # ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------
2
- #
3
  # This space is created by SANJOG GHONGE for testing and learning purpose.
4
  #
5
  # If you want to remove this space or credits please contact me on my email id [[email protected]].
@@ -24,14 +24,25 @@
24
  #
25
  # -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
26
 
27
- from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
28
  from qwen_vl_utils import process_vision_info
29
  import gradio as gr
30
  from PIL import Image
 
 
 
 
 
 
 
 
 
 
 
31
 
32
  # Load the model and processor
33
  model = Qwen2VLForConditionalGeneration.from_pretrained(
34
- "Qwen/QVQ-72B-Preview", torch_dtype="torch.float16", device_map="auto", load_in_4bit=True,
35
  )
36
  processor = AutoProcessor.from_pretrained("Qwen/QVQ-72B-Preview")
37
 
@@ -83,7 +94,7 @@ def process_image_and_question(image, question):
83
 
84
  # Define the Gradio interface
85
  with gr.Blocks() as demo:
86
- gr.Markdown("# Sanjog Image and Question Answering\nProvide an image (JPG/PNG) and a related question to get an answer.")
87
 
88
  with gr.Row():
89
  with gr.Column():
@@ -105,51 +116,3 @@ with gr.Blocks() as demo:
105
  demo.launch()
106
 
107
 
108
- # ------------------------------------------------------------------------------------------------------------------------------------
109
-
110
-
111
-
112
- # import gradio as gr
113
- # from transformers import AutoProcessor, AutoModelForImageTextToText
114
-
115
- # # Load the processor and model
116
- # model_name = "Qwen/QVQ-72B-Preview"
117
- # processor = AutoProcessor.from_pretrained(model_name)
118
- # model = AutoModelForImageTextToText.from_pretrained(model_name)
119
-
120
- # # Define the prediction function
121
- # def process_image_and_question(image, question):
122
- # if image is None or not question:
123
- # return "Please provide both an image and a question."
124
-
125
- # # Process the inputs
126
- # inputs = processor(images=image, text=question, return_tensors="pt")
127
-
128
- # # Generate the output
129
- # outputs = model.generate(**inputs)
130
- # answer = processor.batch_decode(outputs, skip_special_tokens=True)[0]
131
-
132
- # return answer
133
-
134
- # # Define the Gradio interface
135
- # with gr.Blocks() as demo:
136
- # gr.Markdown("# Image and Question Answering\nProvide an image (JPG/PNG) and a related question to get an answer.")
137
-
138
- # with gr.Row():
139
- # with gr.Column():
140
- # image_input = gr.Image(type="pil", label="Upload Image (JPG/PNG)")
141
- # question_input = gr.Textbox(label="Enter your question")
142
-
143
- # with gr.Column():
144
- # output_box = gr.Textbox(label="Result", interactive=False)
145
-
146
- # with gr.Row():
147
- # clear_button = gr.Button("Clear")
148
- # submit_button = gr.Button("Submit")
149
-
150
- # # Define button functionality
151
- # clear_button.click(lambda: (None, "", ""), inputs=[], outputs=[image_input, question_input, output_box])
152
- # submit_button.click(process_image_and_question, inputs=[image_input, question_input], outputs=output_box)
153
-
154
- # # Launch the interface
155
- # demo.launch()
 
1
  # ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------
2
+ #
3
  # This space is created by SANJOG GHONGE for testing and learning purpose.
4
  #
5
  # If you want to remove this space or credits please contact me on my email id [[email protected]].
 
24
  #
25
  # -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
26
 
27
+ from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, BitsAndBytesConfig
28
  from qwen_vl_utils import process_vision_info
29
  import gradio as gr
30
  from PIL import Image
31
+ import torch
32
+ print(torch.cuda.memory_summary())
33
+
34
+
35
+ # Create a configuration for quantization
36
+ quantization_config = BitsAndBytesConfig(
37
+ load_in_4bit=True, # Set to True for 4-bit quantization
38
+ bnb_4bit_compute_dtype="float16", # Use float16 for faster computations
39
+ bnb_4bit_use_double_quant=True, # Optional: Double quantization for memory savings
40
+ bnb_4bit_quant_type="nf4", # NormalFloat4 (nf4) is better for performance
41
+ )
42
 
43
  # Load the model and processor
44
  model = Qwen2VLForConditionalGeneration.from_pretrained(
45
+ "Qwen/QVQ-72B-Preview", device_map="auto", quantization_config=quantization_config,
46
  )
47
  processor = AutoProcessor.from_pretrained("Qwen/QVQ-72B-Preview")
48
 
 
94
 
95
  # Define the Gradio interface
96
  with gr.Blocks() as demo:
97
+ gr.Markdown("# Sanjog Test : Image and Question Answering\nProvide an image (JPG/PNG) and a related question to get an answer.")
98
 
99
  with gr.Row():
100
  with gr.Column():
 
116
  demo.launch()
117
 
118